Decomposition of multi-valued functions into min- and max-gates

C. Lang, B. Steinbach
{"title":"Decomposition of multi-valued functions into min- and max-gates","authors":"C. Lang, B. Steinbach","doi":"10.1109/ISMVL.2001.924569","DOIUrl":null,"url":null,"abstract":"This paper presents algorithms that allow the realization of multi-valued functions as a multi-level network consisting of min- and max-gates. The algorithms are based on bi-decomposition of function intervals, a generalization of incompletely specified functions. Multi-valued derivation operators are applied to compute decomposition structures. For validation the algorithms have been implemented in the YADE system. Results of the decomposition of functions from machine learning applications are listed and compared to the results of another decomposer.","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents algorithms that allow the realization of multi-valued functions as a multi-level network consisting of min- and max-gates. The algorithms are based on bi-decomposition of function intervals, a generalization of incompletely specified functions. Multi-valued derivation operators are applied to compute decomposition structures. For validation the algorithms have been implemented in the YADE system. Results of the decomposition of functions from machine learning applications are listed and compared to the results of another decomposer.
多值函数分解为极小门和极大门
本文提出了将多值函数作为由最小门和最大门组成的多级网络来实现的算法。该算法基于函数区间的双分解,这是对不完全指定函数的一种推广。采用多值推导算子计算分解结构。为了验证这些算法在YADE系统中的有效性。列出了机器学习应用程序中函数分解的结果,并与另一个分解者的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信