{"title":"Mining the Largest Quasi-clique in Human Protein Interactome","authors":"M. Bhattacharyya, S. Bandyopadhyay","doi":"10.1109/ICAIS.2009.39","DOIUrl":null,"url":null,"abstract":"A clique is a complete subgraph of a graph. Often, a clique is interpreted as a dense module of vertices within a graph. However, in many real-world situations, the classical problem of finding a clique is required to be relaxed. This motivates the problem of finding quasicliques that are almost complete subgraphs of a graph. In sparse and very large scale-free networks, the problem of finding the largest quasi-clique becomes hard to manage with the existing approaches. Here, we propose a heuristic algorithm in this paper for locating the largest quasi-clique from the human protein-protein interaction networks. The results show promise in computational biology research by the exploration of significant protein modules.","PeriodicalId":161840,"journal":{"name":"2009 International Conference on Adaptive and Intelligent Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Adaptive and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIS.2009.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
A clique is a complete subgraph of a graph. Often, a clique is interpreted as a dense module of vertices within a graph. However, in many real-world situations, the classical problem of finding a clique is required to be relaxed. This motivates the problem of finding quasicliques that are almost complete subgraphs of a graph. In sparse and very large scale-free networks, the problem of finding the largest quasi-clique becomes hard to manage with the existing approaches. Here, we propose a heuristic algorithm in this paper for locating the largest quasi-clique from the human protein-protein interaction networks. The results show promise in computational biology research by the exploration of significant protein modules.