{"title":"On the Rate Versus ML-Decoding Complexity Tradeoff of Square LDSTBCs with Unitary Weight Matrices","authors":"Sanjay Karmakar, M. Varanasi","doi":"10.1109/GLOCOM.2008.ECP.237","DOIUrl":null,"url":null,"abstract":"The low decoding complexity structure of Linear Dispersion Space Time Block Codes (LDSTBCs) with unitary weight matrices is analyzed. It is shown that given n = 2alpha, the maximum number of groups in which the information symbols can be separated and decoded independently is (2a + 2), and as we lower the number of different groups to (2k + 2), 0 les k les alpha, we get higher rate codes. We also find the analytic expression for rates that such codes can achieve for any chosen group number, thus completely characterizing the rate-ML-decoding-complexity tradeoff for this class of codes. The proof of the result also includes a method for constructing such optimal rate achieving codes. Interestingly, this analysis produces some low decoding complexity codes with rate greater than one.","PeriodicalId":297815,"journal":{"name":"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2008.ECP.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The low decoding complexity structure of Linear Dispersion Space Time Block Codes (LDSTBCs) with unitary weight matrices is analyzed. It is shown that given n = 2alpha, the maximum number of groups in which the information symbols can be separated and decoded independently is (2a + 2), and as we lower the number of different groups to (2k + 2), 0 les k les alpha, we get higher rate codes. We also find the analytic expression for rates that such codes can achieve for any chosen group number, thus completely characterizing the rate-ML-decoding-complexity tradeoff for this class of codes. The proof of the result also includes a method for constructing such optimal rate achieving codes. Interestingly, this analysis produces some low decoding complexity codes with rate greater than one.