Acceleration Strategies for Gaussian Mean-Shift Image Segmentation

M. A. Carreira-Perpiñán
{"title":"Acceleration Strategies for Gaussian Mean-Shift Image Segmentation","authors":"M. A. Carreira-Perpiñán","doi":"10.1109/CVPR.2006.44","DOIUrl":null,"url":null,"abstract":"Gaussian mean-shift (GMS) is a clustering algorithm that has been shown to produce good image segmentations (where each pixel is represented as a feature vector with spatial and range components). GMS operates by defining a Gaussian kernel density estimate for the data and clustering together points that converge to the same mode under a fixed-point iterative scheme. However, the algorithm is slow, since its complexity is O(kN2), where N is the number of pixels and k the average number of iterations per pixel. We study four acceleration strategies for GMS based on the spatial structure of images and on the fact that GMS is an expectation-maximisation (EM) algorithm: spatial discretisation, spatial neighbourhood, sparse EM and EM-Newton algorithm. We show that the spatial discretisation strategy can accelerate GMS by one to two orders of magnitude while achieving essentially the same segmentation; and that the other strategies attain speedups of less than an order of magnitude.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

Gaussian mean-shift (GMS) is a clustering algorithm that has been shown to produce good image segmentations (where each pixel is represented as a feature vector with spatial and range components). GMS operates by defining a Gaussian kernel density estimate for the data and clustering together points that converge to the same mode under a fixed-point iterative scheme. However, the algorithm is slow, since its complexity is O(kN2), where N is the number of pixels and k the average number of iterations per pixel. We study four acceleration strategies for GMS based on the spatial structure of images and on the fact that GMS is an expectation-maximisation (EM) algorithm: spatial discretisation, spatial neighbourhood, sparse EM and EM-Newton algorithm. We show that the spatial discretisation strategy can accelerate GMS by one to two orders of magnitude while achieving essentially the same segmentation; and that the other strategies attain speedups of less than an order of magnitude.
高斯均值移位图像分割的加速策略
高斯均值移位(GMS)是一种聚类算法,已被证明可以产生良好的图像分割(其中每个像素被表示为具有空间和距离分量的特征向量)。GMS的工作原理是为数据定义高斯核密度估计,并在定点迭代方案下将收敛到同一模式的点聚在一起。然而,该算法速度较慢,因为其复杂度为O(kN2),其中N为像素数,k为每个像素的平均迭代次数。基于图像的空间结构和期望最大化(EM)算法的特点,研究了四种GMS加速策略:空间离散化、空间邻域、稀疏EM和EM- newton算法。我们表明,空间离散化策略可以在实现基本相同的分割的同时,将GMS的速度提高一到两个数量级;而其他策略获得的加速不到一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信