DBN structure learning based on MI-BPSO algorithm

Guoliang Li, Xiaoguang Gao, Ruo-hai Di
{"title":"DBN structure learning based on MI-BPSO algorithm","authors":"Guoliang Li, Xiaoguang Gao, Ruo-hai Di","doi":"10.1109/ICIS.2014.6912142","DOIUrl":null,"url":null,"abstract":"To improve the accuracy of structure learning for Dynamic Bayesian Network (DBN), this paper proposes Mutual Information-Binary Particle Swarm Optimization (MI-BPSO) algorithm. The MI-BPSO algorithm firstly uses MI and conditional independence test to prune the search space and speed up the convergence of the searching phase, then calls BPSO algorithm to search the constrained space and get the intra-network and inter-network of DBN. Experimental results show that this algorithm performs as well as K2 while it doesn't need a given variable ordering, and performs better than MWST-GES, MWST-HC and I-BN-PSO.","PeriodicalId":237256,"journal":{"name":"2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2014.6912142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To improve the accuracy of structure learning for Dynamic Bayesian Network (DBN), this paper proposes Mutual Information-Binary Particle Swarm Optimization (MI-BPSO) algorithm. The MI-BPSO algorithm firstly uses MI and conditional independence test to prune the search space and speed up the convergence of the searching phase, then calls BPSO algorithm to search the constrained space and get the intra-network and inter-network of DBN. Experimental results show that this algorithm performs as well as K2 while it doesn't need a given variable ordering, and performs better than MWST-GES, MWST-HC and I-BN-PSO.
基于MI-BPSO算法的DBN结构学习
为了提高动态贝叶斯网络(DBN)的结构学习精度,提出了互信息-二元粒子群优化(MI-BPSO)算法。MI-BPSO算法首先利用MI和条件独立检验对搜索空间进行精简,加快搜索阶段的收敛速度,然后调用BPSO算法对约束空间进行搜索,得到DBN的网络内和网络间。实验结果表明,该算法在不需要给定变量排序的情况下,性能与K2相当,优于MWST-GES、MWST-HC和I-BN-PSO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信