A Wavelet Approach to Tail Risk

Hassan Ennadifi
{"title":"A Wavelet Approach to Tail Risk","authors":"Hassan Ennadifi","doi":"10.2139/ssrn.3249928","DOIUrl":null,"url":null,"abstract":"We apply wavelet analysis to observe financial returns. We demonstrate how useful wavelets can be to separate normal market conditions from stressed market conditions. After noise removal, a process appears to manifest itself during period of financial distress and show a remarkable alignment across asset classes. We finally propose an adaptation of a hidden Markov model used in speech recognition for the simulation of financial returns in the wavelet domain. This model natively acknowledges that daily returns contain different frequency information, simulates realistically over a given risk horizon and captures the tail risk: wild movements unanticipated by usual normality assumptions.","PeriodicalId":187811,"journal":{"name":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Capital Markets - Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3249928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We apply wavelet analysis to observe financial returns. We demonstrate how useful wavelets can be to separate normal market conditions from stressed market conditions. After noise removal, a process appears to manifest itself during period of financial distress and show a remarkable alignment across asset classes. We finally propose an adaptation of a hidden Markov model used in speech recognition for the simulation of financial returns in the wavelet domain. This model natively acknowledges that daily returns contain different frequency information, simulates realistically over a given risk horizon and captures the tail risk: wild movements unanticipated by usual normality assumptions.
尾部风险的小波分析
我们用小波分析来观察财务收益。我们展示了小波在区分正常市场条件和压力市场条件方面是多么有用。在去除噪声之后,一个过程似乎在金融危机期间显现出来,并显示出跨资产类别的显著一致性。我们最后提出了一种用于语音识别的隐马尔可夫模型在小波域模拟金融回报的适应性。该模型本身承认日收益包含不同的频率信息,在给定的风险范围内真实地模拟,并捕获尾部风险:通常常态假设无法预料的剧烈波动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信