Alvaro Torres, P. Piñol, C. Calafate, Juan-Carlos Cano, P. Manzoni
{"title":"Evaluating H.265 real-time video flooding quality in highway V2V environments","authors":"Alvaro Torres, P. Piñol, C. Calafate, Juan-Carlos Cano, P. Manzoni","doi":"10.1109/WCNC.2014.6952858","DOIUrl":null,"url":null,"abstract":"Video transmission over VANETs is an extremely difficult task not only due to the high bandwidth requirements, but also due to typical VANET characteristics such as signal attenuation, packet losses, high relative speeds and fast topology changes. In future scenarios, vehicles will provide other vehicles with information about accidents or congestion on the road, and in these cases offering visual information can be a really valuable resource for both drivers and traffic authorities. Hence, achieving an efficient transmission is critical to maximize the user-perceived quality. In this paper we evaluate solutions that combine different flooding techniques, and different video codecs to assess the effectiveness of long-distance real-time video streaming. In particular, we will compare the most effective video coding standard available (H.264) with the upcoming H.265 codec in terms of both frame loss and PSNR.","PeriodicalId":220393,"journal":{"name":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2014.6952858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Video transmission over VANETs is an extremely difficult task not only due to the high bandwidth requirements, but also due to typical VANET characteristics such as signal attenuation, packet losses, high relative speeds and fast topology changes. In future scenarios, vehicles will provide other vehicles with information about accidents or congestion on the road, and in these cases offering visual information can be a really valuable resource for both drivers and traffic authorities. Hence, achieving an efficient transmission is critical to maximize the user-perceived quality. In this paper we evaluate solutions that combine different flooding techniques, and different video codecs to assess the effectiveness of long-distance real-time video streaming. In particular, we will compare the most effective video coding standard available (H.264) with the upcoming H.265 codec in terms of both frame loss and PSNR.