Single-bacterium resolution biosensors based on pristine graphenes

F. Rao, H. Al-Mumen, D. Ramos-Gonzalez, Lixin Dong, Wen Li
{"title":"Single-bacterium resolution biosensors based on pristine graphenes","authors":"F. Rao, H. Al-Mumen, D. Ramos-Gonzalez, Lixin Dong, Wen Li","doi":"10.1109/3M-NANO.2012.6472956","DOIUrl":null,"url":null,"abstract":"We investigated the sensing abilities of pristine graphene based nanosensors in response to the attachment of Escherichia coli (E. coli) to the graphene surfaces. Using pristine graphenes, instead of functionalized graphenes, helps us understand better the influence of E. coli cells on the transport properties of graphenes. The biosensors based on pristine few-layer graphenes showed a discriminable response to the attachment of an individual E. coli cell, indicating the sensing ability with single-bacterium resolution. Furthermore, higher sensitivities were achieved using pristine mono-layer graphenes and graphene microribbons as the sensing materials. The higher sensitivities can be attributed to the elimination of the interferences from inessential graphene layers and the quantum confinement in the graphene microribbon.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6472956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigated the sensing abilities of pristine graphene based nanosensors in response to the attachment of Escherichia coli (E. coli) to the graphene surfaces. Using pristine graphenes, instead of functionalized graphenes, helps us understand better the influence of E. coli cells on the transport properties of graphenes. The biosensors based on pristine few-layer graphenes showed a discriminable response to the attachment of an individual E. coli cell, indicating the sensing ability with single-bacterium resolution. Furthermore, higher sensitivities were achieved using pristine mono-layer graphenes and graphene microribbons as the sensing materials. The higher sensitivities can be attributed to the elimination of the interferences from inessential graphene layers and the quantum confinement in the graphene microribbon.
基于原始石墨烯的单细菌分辨率生物传感器
我们研究了原始石墨烯纳米传感器对大肠杆菌附着在石墨烯表面的传感能力。使用原始石墨烯,而不是功能化石墨烯,有助于我们更好地了解大肠杆菌细胞对石墨烯运输特性的影响。基于原始的几层石墨烯的生物传感器对单个大肠杆菌细胞的附着表现出可分辨的反应,表明具有单细菌分辨率的传感能力。此外,使用原始单层石墨烯和石墨烯微带作为传感材料获得了更高的灵敏度。更高的灵敏度可归因于消除了不必要的石墨烯层的干扰和石墨烯微带中的量子限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信