{"title":"A temperature variation tolerant 60 GHz Low Noise Amplifier with current compensated bias circuit","authors":"S. Kawai, Tong Wang, T. Mitomo, S. Saigusa","doi":"10.1109/ASSCC.2013.6691074","DOIUrl":null,"url":null,"abstract":"This paper presents a temperature variation tolerant 60 GHz Low Noise Amplifier (LNA) for mm-wave communication systems. The proposed temperature compensated bias circuit is utilized for the common source LNA. The temperature variation of S21 is 1.71dB in the temperature range from -20°C to 100°C, which is 47% lower than the value reported in previous work. The Figure of Merit (FoM) of the proposed LNA at 25°C is comparable to the top value of state-of-the-art work and FoM at 100°C is also comparable to those reported in the literature operated at room temperature.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6691074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents a temperature variation tolerant 60 GHz Low Noise Amplifier (LNA) for mm-wave communication systems. The proposed temperature compensated bias circuit is utilized for the common source LNA. The temperature variation of S21 is 1.71dB in the temperature range from -20°C to 100°C, which is 47% lower than the value reported in previous work. The Figure of Merit (FoM) of the proposed LNA at 25°C is comparable to the top value of state-of-the-art work and FoM at 100°C is also comparable to those reported in the literature operated at room temperature.