{"title":"Bingham Fluid Simulation in Porous Media with Lattice Boltzmann Method","authors":"J. Ortega","doi":"10.5772/intechopen.90167","DOIUrl":null,"url":null,"abstract":"Generate a lattice Boltzmann model (LBM), which allows to simulate the behavior of a Bingham fluid through a rectangular channel with the D2Q9 model. For this purpose, a relaxation parameter is proposed based on the rheological parameters of the Bingham model. The validation will be carried out with the solution of the movement equation, and velocity profiles will be obtained for three different Bingham numbers (Bn). Other simulations will be made in a rectangular channel in the presence of arbitrarily and randomly generated porous media. The main objective is to propose a method to predict the behavior of non-Newtonian fluids (Bingham fluid) through porous media, which have many applications in the chemical industry avoiding at the same time the expensive experimentation of these systems, with predicting models.","PeriodicalId":283514,"journal":{"name":"Computational Fluid Dynamics Simulations","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Fluid Dynamics Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Generate a lattice Boltzmann model (LBM), which allows to simulate the behavior of a Bingham fluid through a rectangular channel with the D2Q9 model. For this purpose, a relaxation parameter is proposed based on the rheological parameters of the Bingham model. The validation will be carried out with the solution of the movement equation, and velocity profiles will be obtained for three different Bingham numbers (Bn). Other simulations will be made in a rectangular channel in the presence of arbitrarily and randomly generated porous media. The main objective is to propose a method to predict the behavior of non-Newtonian fluids (Bingham fluid) through porous media, which have many applications in the chemical industry avoiding at the same time the expensive experimentation of these systems, with predicting models.