A method to compute saliency regions in 3D video based on fusion of feature maps

Lino Ferreira, L. Cruz, P. Assunção
{"title":"A method to compute saliency regions in 3D video based on fusion of feature maps","authors":"Lino Ferreira, L. Cruz, P. Assunção","doi":"10.1109/ICME.2015.7177474","DOIUrl":null,"url":null,"abstract":"Efficient computation of visual saliency regions has been a research problem in the recent past, but in the case of 3D content no definite solutions exist. This paper presents a computational method to determine saliency regions in 3D video, based on fusion of three feature maps containing perceptually relevant information from spatial, temporal and depth dimensions. The proposed method follows a bottom-up approach to predict the 3D regions where observers tend to hold their gaze for longer periods. Fusion of the feature maps is combined with a center-bias weighting function to determine 3D visual saliency map. For validation and performance evaluation, a publicly available database of 3D video sequences and corresponding fixation density maps was used as ground-truth. The experimental results show that the proposed method achieves better performance than other state-of-art models.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Efficient computation of visual saliency regions has been a research problem in the recent past, but in the case of 3D content no definite solutions exist. This paper presents a computational method to determine saliency regions in 3D video, based on fusion of three feature maps containing perceptually relevant information from spatial, temporal and depth dimensions. The proposed method follows a bottom-up approach to predict the 3D regions where observers tend to hold their gaze for longer periods. Fusion of the feature maps is combined with a center-bias weighting function to determine 3D visual saliency map. For validation and performance evaluation, a publicly available database of 3D video sequences and corresponding fixation density maps was used as ground-truth. The experimental results show that the proposed method achieves better performance than other state-of-art models.
一种基于特征映射融合的三维视频显著区域计算方法
视觉显著区域的高效计算一直是近年来研究的一个问题,但在3D内容的情况下,没有明确的解决方案。本文提出了一种基于融合三维视频中包含空间、时间和深度维度感知相关信息的三个特征图的计算方法来确定3D视频中的显著区域。提出的方法采用自下而上的方法来预测观察者倾向于长时间凝视的3D区域。结合特征图的融合和中心偏置加权函数确定三维视觉显著性图。为了验证和性能评估,使用公开可用的3D视频序列数据库和相应的固定密度图作为基础事实。实验结果表明,该方法比现有的模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信