Image Spoofing Detection Using Local Binary Pattern and Local Binary Pattern Variance

Indra Bayu Kusuma, Arida Kartika, W TjokordaAgungBudi, Kurniawan Nur Ramadhani, F. Sthevanie
{"title":"Image Spoofing Detection Using Local Binary Pattern and Local Binary Pattern Variance","authors":"Indra Bayu Kusuma, Arida Kartika, W TjokordaAgungBudi, Kurniawan Nur Ramadhani, F. Sthevanie","doi":"10.21108/IJOICT.2018.42.134","DOIUrl":null,"url":null,"abstract":"Particularly in the field of biometric security using human face has been widely implemented in the real world. Currently the human face is one of the guidelines in the security system. Nowadays the challenge is how to detect data falsification; such an attack is called spoofing. Spoofing occurs when someone is trying to pretend to be someone else by falsifying the original data and then that person may gain illegal access and benefit him. For example one can falsify the face recognition system using photographs, video, masks or 3D models. In this paper image spoofing human face detection using texture analysis on input image is proposed. Texture analysis used in this paper is the Local Binary Pattern (LBP) and Local Binary Pattern Variance (LBPV). To classified input as original or spoof K-Nearest Neighbor (KNN) used. Experiment used 5761 spoofs and 3362 original from NUAA Imposter dataset. The experimental result yielded a best success rate of 87.22% in term of accuracy with configuration of the system using LBPV and histogram equalization with ratio 𝑅 = 7 and 𝑃 = 8.","PeriodicalId":137090,"journal":{"name":"International Journal on Information and Communication Technology (IJoICT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information and Communication Technology (IJoICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21108/IJOICT.2018.42.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Particularly in the field of biometric security using human face has been widely implemented in the real world. Currently the human face is one of the guidelines in the security system. Nowadays the challenge is how to detect data falsification; such an attack is called spoofing. Spoofing occurs when someone is trying to pretend to be someone else by falsifying the original data and then that person may gain illegal access and benefit him. For example one can falsify the face recognition system using photographs, video, masks or 3D models. In this paper image spoofing human face detection using texture analysis on input image is proposed. Texture analysis used in this paper is the Local Binary Pattern (LBP) and Local Binary Pattern Variance (LBPV). To classified input as original or spoof K-Nearest Neighbor (KNN) used. Experiment used 5761 spoofs and 3362 original from NUAA Imposter dataset. The experimental result yielded a best success rate of 87.22% in term of accuracy with configuration of the system using LBPV and histogram equalization with ratio 𝑅 = 7 and 𝑃 = 8.
基于局部二值模式和局部二值模式方差的图像欺骗检测
特别是在生物识别安全领域,人脸识别技术已经在现实世界中得到了广泛的应用。目前,人脸识别是安防系统的指导方针之一。目前面临的挑战是如何检测数据伪造;这种攻击称为欺骗。当有人试图通过伪造原始数据来冒充他人,然后该人可能获得非法访问并从中受益时,就会发生欺骗。例如,人们可以使用照片、视频、面具或3D模型伪造人脸识别系统。本文提出了一种基于纹理分析的图像欺骗人脸检测方法。本文使用的纹理分析是局部二值模式(LBP)和局部二值模式方差(LBPV)。将输入分类为原始或欺骗的k近邻(KNN)。实验使用来自NUAA Imposter数据集的5761个欺骗和3362个原始欺骗。实验结果表明,采用LBPV和直方图均衡化(比例𝑅= 7,比例 = 8)配置系统,准确率最高,成功率为87.22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信