{"title":"High-performance MAC for high-capacity wireless LANs","authors":"Yuan Yuan, Daqing Gu, W. Arbaugh, Jinyun Zhang","doi":"10.1109/ICCCN.2004.1401615","DOIUrl":null,"url":null,"abstract":"The next-generation wireless technologies, e.g., 802.11n and 802.15.3a, offer a physical-layer speed at least an-order-of-magnitude higher than the current standards. However, direct application of current MACs leads to high protocol overhead and significant throughput degradation. In this paper, we propose ADCA, a high-performance MAC that works with high-capacity physical layer. ADCA exploits two ideas of adaptive batch transmission and opportunistic selection of high-rate hosts to simultaneously reduce the overhead and improve the aggregate throughput. It opportunistically favors high-rate hosts by providing higher access probability and more access time, while ensuring each low-rate host certain minimum amount of channel access time. Simulations show that the ADCA design increases the throughput by 112% and reduces the average delay by 55% compared with the legacy DCF. It delivers more than 100 Mbps MAC-layer throughput as compared with 35 Mbps offered by the legacy MAC","PeriodicalId":229045,"journal":{"name":"Proceedings. 13th International Conference on Computer Communications and Networks (IEEE Cat. No.04EX969)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 13th International Conference on Computer Communications and Networks (IEEE Cat. No.04EX969)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2004.1401615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
The next-generation wireless technologies, e.g., 802.11n and 802.15.3a, offer a physical-layer speed at least an-order-of-magnitude higher than the current standards. However, direct application of current MACs leads to high protocol overhead and significant throughput degradation. In this paper, we propose ADCA, a high-performance MAC that works with high-capacity physical layer. ADCA exploits two ideas of adaptive batch transmission and opportunistic selection of high-rate hosts to simultaneously reduce the overhead and improve the aggregate throughput. It opportunistically favors high-rate hosts by providing higher access probability and more access time, while ensuring each low-rate host certain minimum amount of channel access time. Simulations show that the ADCA design increases the throughput by 112% and reduces the average delay by 55% compared with the legacy DCF. It delivers more than 100 Mbps MAC-layer throughput as compared with 35 Mbps offered by the legacy MAC