Multi objective optimization of humanoid robot arm motion for obstacle avoidance

Z. Mohamed, G. Capi
{"title":"Multi objective optimization of humanoid robot arm motion for obstacle avoidance","authors":"Z. Mohamed, G. Capi","doi":"10.1109/IRIS.2015.7451596","DOIUrl":null,"url":null,"abstract":"Picking and placing objects on the table for an assistive humanoid robot requires good coordination and motion strategies. Obstacle avoidance is one of the main factor needs to be considered. In this paper, the arm motion generation for obstacle avoidance is formulated as an optimization problem. Multi-Objective Genetic Algorithm (MOGA) is utilized to generate the neural controller, optimizing three objective functions namely minimum execution time, minimum gripper distance and minimum arm acceleration. The main advantage of the proposed method is that in a single run of MOGA, multiple optimized neural controllers are generated. A wide range of initial and goal position can be achieved utilizing the same generated neural controller. The performance of the generated humanoid robot arm motion yields good results in simulation and experimental environments.","PeriodicalId":175861,"journal":{"name":"2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2015.7451596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Picking and placing objects on the table for an assistive humanoid robot requires good coordination and motion strategies. Obstacle avoidance is one of the main factor needs to be considered. In this paper, the arm motion generation for obstacle avoidance is formulated as an optimization problem. Multi-Objective Genetic Algorithm (MOGA) is utilized to generate the neural controller, optimizing three objective functions namely minimum execution time, minimum gripper distance and minimum arm acceleration. The main advantage of the proposed method is that in a single run of MOGA, multiple optimized neural controllers are generated. A wide range of initial and goal position can be achieved utilizing the same generated neural controller. The performance of the generated humanoid robot arm motion yields good results in simulation and experimental environments.
面向避障的仿人机器人手臂运动多目标优化
辅助类人机器人在桌子上拾取和放置物体需要良好的协调性和运动策略。避障是需要考虑的主要因素之一。本文将机械臂避障运动生成问题表述为一个优化问题。利用多目标遗传算法(MOGA)生成神经控制器,优化最小执行时间、最小夹持距离和最小手臂加速度三个目标函数。该方法的主要优点是在单次MOGA运行中生成多个优化的神经控制器。利用同一个生成的神经控制器可以实现大范围的初始位置和目标位置。所生成的仿人机器人手臂运动在仿真和实验环境中均取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信