Dynamic Conditional Eigenvalue GARCH

S. Hetland, R. Pedersen, Anders Rahbek
{"title":"Dynamic Conditional Eigenvalue GARCH","authors":"S. Hetland, R. Pedersen, Anders Rahbek","doi":"10.2139/ssrn.3505302","DOIUrl":null,"url":null,"abstract":"In this paper we consider a multivariate generalized autoregressive conditional heteroskedastic (GARCH) class of models where the eigenvalues of the conditional covariance matrix are time-varying. The proposed dynamics of the eigenvalues is based on applying the general theory of dynamic conditional score models as proposed by Creal, Koopman and Lucas (2013) and Harvey (2013). We denote the obtained GARCH model with dynamic conditional eigenvalues (and constant conditional eigenvectors) as the ?-GARCH model. We provide new results on asymptotic theory for the Gaussian QMLE, and for testing of reduced rank of the (G)ARCH loading matrices of the time-varying eigenvalues. The theory is applied to US data, where we ?find that the eigenvalue structure can be reduced similar to testing for the number in factors in volatility models.","PeriodicalId":200007,"journal":{"name":"ERN: Statistical Decision Theory; Operations Research (Topic)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Statistical Decision Theory; Operations Research (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3505302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we consider a multivariate generalized autoregressive conditional heteroskedastic (GARCH) class of models where the eigenvalues of the conditional covariance matrix are time-varying. The proposed dynamics of the eigenvalues is based on applying the general theory of dynamic conditional score models as proposed by Creal, Koopman and Lucas (2013) and Harvey (2013). We denote the obtained GARCH model with dynamic conditional eigenvalues (and constant conditional eigenvectors) as the ?-GARCH model. We provide new results on asymptotic theory for the Gaussian QMLE, and for testing of reduced rank of the (G)ARCH loading matrices of the time-varying eigenvalues. The theory is applied to US data, where we ?find that the eigenvalue structure can be reduced similar to testing for the number in factors in volatility models.
动态条件特征值GARCH
本文研究了一类条件协方差矩阵的特征值为时变的多元广义自回归条件异方差(GARCH)模型。提出的特征值动态是基于应用Creal, Koopman和Lucas(2013)以及Harvey(2013)提出的动态条件分数模型的一般理论。我们将得到的具有动态条件特征值(和恒定条件特征向量)的GARCH模型表示为?-GARCH模型。我们给出了高斯QMLE渐近理论的新结果,以及时变特征值的(G)ARCH加载矩阵的降秩检验。该理论应用于美国数据,我们发现特征值结构可以减少,类似于测试波动率模型中的因素数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信