Resource Discovery in Networks under Bandwidth Limitations

K. Konwar, Alexander A. Shvartsman
{"title":"Resource Discovery in Networks under Bandwidth Limitations","authors":"K. Konwar, Alexander A. Shvartsman","doi":"10.1109/ISPDC.2006.40","DOIUrl":null,"url":null,"abstract":"The resource discovery problem, where cooperating machines need to find one another in a network, was introduced by Harchol-Balter, Leighton, and Lewin (1999) in the context of Akamai Technologies with the goal of building an Internet-wide content-distribution system. In the solutions for the synchronous setting proposed so far in the papers by Harchol-Bartel et al. (1999), Kutten et al. (2001) and Law and Siu (2000), there is a possibility that during some time step many machines may contact a single machine, and this is not a realistic assumption. This work assumes a synchronous model, however at each step a machine can send and receive only a constant number of messages. It is shown that the conjectured poly-logarithmic upper bound (Harchol-Bartel et al., 1999) for such a setting is not possible. This is done by proving a lower bound on time of Omega(n), where n is the number of participating nodes. For this model a randomized algorithm is presented that solves the resource discovery problem in O(n log2 n) time, i.e., within a poly-logarithmic factor of the corresponding lower bound. The algorithm has a O(n2 log2 n) message complexity and O(n3 log3 n) communication complexity. Simulation results for the algorithm illustrate the lower and upper bounds, and lead to interesting observations","PeriodicalId":196790,"journal":{"name":"2006 Fifth International Symposium on Parallel and Distributed Computing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Fifth International Symposium on Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2006.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The resource discovery problem, where cooperating machines need to find one another in a network, was introduced by Harchol-Balter, Leighton, and Lewin (1999) in the context of Akamai Technologies with the goal of building an Internet-wide content-distribution system. In the solutions for the synchronous setting proposed so far in the papers by Harchol-Bartel et al. (1999), Kutten et al. (2001) and Law and Siu (2000), there is a possibility that during some time step many machines may contact a single machine, and this is not a realistic assumption. This work assumes a synchronous model, however at each step a machine can send and receive only a constant number of messages. It is shown that the conjectured poly-logarithmic upper bound (Harchol-Bartel et al., 1999) for such a setting is not possible. This is done by proving a lower bound on time of Omega(n), where n is the number of participating nodes. For this model a randomized algorithm is presented that solves the resource discovery problem in O(n log2 n) time, i.e., within a poly-logarithmic factor of the corresponding lower bound. The algorithm has a O(n2 log2 n) message complexity and O(n3 log3 n) communication complexity. Simulation results for the algorithm illustrate the lower and upper bounds, and lead to interesting observations
带宽限制下的网络资源发现
资源发现问题,即协作机器需要在网络中找到彼此,是由harhol - balter、Leighton和Lewin(1999)在Akamai Technologies的背景下提出的,其目标是建立一个互联网范围的内容分发系统。迄今为止,在harhol - bartel等人(1999)、Kutten等人(2001)和Law和Siu(2000)的论文中提出的同步设置解决方案中,存在一种可能性,即在某个时间步长期间,许多机器可能接触到一台机器,这是一个不现实的假设。这项工作采用同步模型,但是在每一步中,机器只能发送和接收固定数量的消息。结果表明,对于这种设置,推测的多对数上界(harcholl - bartel et al., 1999)是不可能的。这是通过证明时间的下界(n)来实现的,其中n是参与节点的数量。对于该模型,提出了一种随机化算法,在O(n log2n)时间内,即在相应下界的多对数因子范围内解决资源发现问题。该算法的消息复杂度为O(n2 log2 n),通信复杂度为O(n3 log3 n)。仿真结果说明了算法的下界和上界,并得出了有趣的观察结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信