A Re-trained Model Based On Multi-kernel Convolutional Neural Network for Acoustic Scene Classification

Tuan N. Nguyen, D. Ngo, L. Pham, Linh Tran, Trang Hoang
{"title":"A Re-trained Model Based On Multi-kernel Convolutional Neural Network for Acoustic Scene Classification","authors":"Tuan N. Nguyen, D. Ngo, L. Pham, Linh Tran, Trang Hoang","doi":"10.1109/RIVF48685.2020.9140774","DOIUrl":null,"url":null,"abstract":"This paper proposes a deep learning framework applied for Acoustic Scene Classification (ASC), which identifies recording location. In general, we apply three types of spectrograms: Gammatone (GAM), log-Mel and Constant Q Transform (CQT) for front-end feature extraction. For back-end classification, we present a re-trained model with a multi-kernel CDNN-based architecture for the pre-trained process and a DNN-based network for the post-trained process. Our obtained results over DCASE 2016 dataset show a significant improvement, increasing by nearly 8% compared to DCASE baseline of 77.2%.","PeriodicalId":169999,"journal":{"name":"2020 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF48685.2020.9140774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a deep learning framework applied for Acoustic Scene Classification (ASC), which identifies recording location. In general, we apply three types of spectrograms: Gammatone (GAM), log-Mel and Constant Q Transform (CQT) for front-end feature extraction. For back-end classification, we present a re-trained model with a multi-kernel CDNN-based architecture for the pre-trained process and a DNN-based network for the post-trained process. Our obtained results over DCASE 2016 dataset show a significant improvement, increasing by nearly 8% compared to DCASE baseline of 77.2%.
基于多核卷积神经网络的声学场景分类再训练模型
本文提出了一种应用于声学场景分类(ASC)的深度学习框架,用于识别录音位置。一般来说,我们应用三种类型的谱图:伽玛酮(GAM),对数-梅尔和常数Q变换(CQT)进行前端特征提取。对于后端分类,我们提出了一个重新训练的模型,其中基于多核cdn的体系结构用于预训练过程,基于dnn的网络用于后训练过程。我们在DCASE 2016数据集上获得的结果显示出显着的改善,与DCASE基线的77.2%相比,提高了近8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信