Efficient and kernel-independent Evaluation of Singular Integrals in Volume Integral Equations

Cedric Münger, K. Cools
{"title":"Efficient and kernel-independent Evaluation of Singular Integrals in Volume Integral Equations","authors":"Cedric Münger, K. Cools","doi":"10.1109/comcas52219.2021.9629074","DOIUrl":null,"url":null,"abstract":"We present a method for the numerical evaluation of 6D singular integrals appearing in Volume Integral Equations. It is an extension of the Sauter-Schwab/Taylor-Duffy strategy for singular triangle-triangle interaction integrals to singular tetrahedron-tetrahedron interaction integrals. This general approach allows to use different kinds of kernel and basis functions. It also works on curvilinear domains. Our approach is based on relative coordinates and splitting the integration domain into subdomains for which quadrature rules can be constructed. Further, we show how to build these tensor-product quadrature rules economically using quadrature rules defined over 2D, 3D and 4D simplices. Compared to the existing approach where the integral is computed as a sequence of 1D integrations significant speedup can be achieved. The accuracy and convergence properties of the method are demonstrated by numerical experiments.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a method for the numerical evaluation of 6D singular integrals appearing in Volume Integral Equations. It is an extension of the Sauter-Schwab/Taylor-Duffy strategy for singular triangle-triangle interaction integrals to singular tetrahedron-tetrahedron interaction integrals. This general approach allows to use different kinds of kernel and basis functions. It also works on curvilinear domains. Our approach is based on relative coordinates and splitting the integration domain into subdomains for which quadrature rules can be constructed. Further, we show how to build these tensor-product quadrature rules economically using quadrature rules defined over 2D, 3D and 4D simplices. Compared to the existing approach where the integral is computed as a sequence of 1D integrations significant speedup can be achieved. The accuracy and convergence properties of the method are demonstrated by numerical experiments.
体积积分方程中奇异积分的高效核无关求值
给出了体积积分方程中出现的6D奇异积分的一种数值求值方法。将奇异三角形-三角形相互作用积分的Sauter-Schwab/Taylor-Duffy策略推广到奇异四面体-四面体相互作用积分。这种通用的方法允许使用不同种类的核函数和基函数。它也适用于曲线域。我们的方法基于相对坐标,并将积分域划分为可构造正交规则的子域。此外,我们展示了如何使用在2D, 3D和4D简单体上定义的正交规则经济地构建这些张量积正交规则。与将积分计算为一维积分序列的现有方法相比,可以实现显着的加速。数值实验验证了该方法的精度和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信