{"title":"DNA-Based Molecular Communication as a Paradigm for Multi-Parameter Detection of Diseases","authors":"F. Lau, R. Wendt, Stefan Fischer","doi":"10.1145/3477206.3477480","DOIUrl":null,"url":null,"abstract":"DNA-based molecular communication is a novel paradigm for nanoscale computation and communication that uses self-assembling DNA message molecules. Due to their design, these message molecules can compute mathematical operations while self-assembling. They can be used in DNA-based nanonetworks to detect DNA sequences and compute information for releasing either medication or other molecules. This paradigm avoids many limitations that electromagnetic nanonetworks currently face. This paper presents a variety of novel advantages and use cases for DNA-based molecular communication. For many of those, no feasible solution exists today. DNA-based molecular communication can even detect and consider multiple different DNA sequences for decision-making. Furthermore, it allows for adjustable error correction, immediate treatments, bio-compatibility, and the use of already available materials.","PeriodicalId":303880,"journal":{"name":"Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477206.3477480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
DNA-based molecular communication is a novel paradigm for nanoscale computation and communication that uses self-assembling DNA message molecules. Due to their design, these message molecules can compute mathematical operations while self-assembling. They can be used in DNA-based nanonetworks to detect DNA sequences and compute information for releasing either medication or other molecules. This paradigm avoids many limitations that electromagnetic nanonetworks currently face. This paper presents a variety of novel advantages and use cases for DNA-based molecular communication. For many of those, no feasible solution exists today. DNA-based molecular communication can even detect and consider multiple different DNA sequences for decision-making. Furthermore, it allows for adjustable error correction, immediate treatments, bio-compatibility, and the use of already available materials.