Comparison of target detection techniques for hyperspectral images

Dharambhai Shah, Madhumita Tripathy, T. Zaveri
{"title":"Comparison of target detection techniques for hyperspectral images","authors":"Dharambhai Shah, Madhumita Tripathy, T. Zaveri","doi":"10.1109/ISCON47742.2019.9036193","DOIUrl":null,"url":null,"abstract":"Target detection is a challenge to detect and classify objects in hyperspectral images. In this paper, a total of six algorithms broadly classified in type I and type II are used to detect targets such as metal, roof, and dirt. Type I algorithm differs from type II as in type II algorithm both target spectra and non-background spectra are used whereas in type I algorithm only target spectra is used as an external input. Vertex Component Analysis (VCA) is used to generate background spectra in type II algorithm. Two different hyperspectral data set such as Pavia and Urban are used for target detection. Detailed analysis of the output of the six methods shows that the wide range of output score plays an important role in the determination of threshold to detect any target. One of the type II method Orthogonal Subspace Projection (OSP) gives the best wide dynamic range compared to other techniques.","PeriodicalId":124412,"journal":{"name":"2019 4th International Conference on Information Systems and Computer Networks (ISCON)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCON47742.2019.9036193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Target detection is a challenge to detect and classify objects in hyperspectral images. In this paper, a total of six algorithms broadly classified in type I and type II are used to detect targets such as metal, roof, and dirt. Type I algorithm differs from type II as in type II algorithm both target spectra and non-background spectra are used whereas in type I algorithm only target spectra is used as an external input. Vertex Component Analysis (VCA) is used to generate background spectra in type II algorithm. Two different hyperspectral data set such as Pavia and Urban are used for target detection. Detailed analysis of the output of the six methods shows that the wide range of output score plays an important role in the determination of threshold to detect any target. One of the type II method Orthogonal Subspace Projection (OSP) gives the best wide dynamic range compared to other techniques.
高光谱图像目标检测技术的比较
目标检测是高光谱图像中目标检测和分类的难点。本文共使用了六种算法,大致分为I类和II类,用于检测金属、屋顶、污垢等目标。I型算法与II型算法不同,II型算法同时使用目标光谱和非背景光谱,而I型算法仅使用目标光谱作为外部输入。第二类算法采用顶点分量分析(Vertex Component Analysis, VCA)生成背景光谱。采用两种不同的高光谱数据集(如Pavia和Urban)进行目标检测。对六种方法输出结果的详细分析表明,输出分数的大范围范围对于确定检测任何目标的阈值起着重要的作用。与其他方法相比,正交子空间投影(OSP)方法具有最佳的宽动态范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信