Volume Approximation Using Kinect Sensor

Von Errol L. Ang, Franz Elijah O. Decinal, N. Linsangan, J. Adtoon
{"title":"Volume Approximation Using Kinect Sensor","authors":"Von Errol L. Ang, Franz Elijah O. Decinal, N. Linsangan, J. Adtoon","doi":"10.1109/HNICEM54116.2021.9731913","DOIUrl":null,"url":null,"abstract":"Kinect has already contributed to object detection, 3D modeling, autonomous navigation, and scene mapping studies. This research aims to use Kinect’s ability to collect depth data by approximating the volume capacity of an open-top subject and producing a 3D representation of it based on the data collected from Kinect and image processing. The experiment included taking the subject’s ground truth volume and comparing it to the system’s volume output. Using Linear Regression for the data interpretation indicates that the device created is reliable enough to produce a correlation coefficient of 0.9621. A significant positive association of the two datasets: experimental volume and theoretical volume. The prototype arrived with an average error rate of 9.003%, implying that the system can get accurate results.","PeriodicalId":129868,"journal":{"name":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM54116.2021.9731913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kinect has already contributed to object detection, 3D modeling, autonomous navigation, and scene mapping studies. This research aims to use Kinect’s ability to collect depth data by approximating the volume capacity of an open-top subject and producing a 3D representation of it based on the data collected from Kinect and image processing. The experiment included taking the subject’s ground truth volume and comparing it to the system’s volume output. Using Linear Regression for the data interpretation indicates that the device created is reliable enough to produce a correlation coefficient of 0.9621. A significant positive association of the two datasets: experimental volume and theoretical volume. The prototype arrived with an average error rate of 9.003%, implying that the system can get accurate results.
使用Kinect传感器的体积近似
Kinect已经在物体探测、3D建模、自主导航和场景地图研究方面做出了贡献。这项研究的目的是利用Kinect的能力来收集深度数据,通过接近一个开顶物体的体积容量,并根据从Kinect收集的数据和图像处理产生它的3D表示。实验包括获取受试者的真实音量,并将其与系统的音量输出进行比较。使用线性回归对数据进行解释,表明所创建的设备足够可靠,相关系数为0.9621。两个数据集的显著正相关:实验体积和理论体积。样机到达时的平均错误率为9.003%,表明系统可以得到准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信