Triple Phase Shift Control of Dual Active Bridge Converter using Machine Learning Methods

Bharat Bohara, A. Karbozov, H. Krishnamoorthy
{"title":"Triple Phase Shift Control of Dual Active Bridge Converter using Machine Learning Methods","authors":"Bharat Bohara, A. Karbozov, H. Krishnamoorthy","doi":"10.1109/TPEC54980.2022.9750772","DOIUrl":null,"url":null,"abstract":"Control of Dual Active Bridge (DAB) converters can be particularly challenging due to the involvement of multiple parameters such as phase shift, duty cycles, etc. This paper proposes a triple-phase shift control (TPSC) method for the DAB converter. TPSC shows better performance compared to the conventional phase shift control by significantly decreasing the current amount that flows through the high frequency (HF) transformer. Furthermore, different machine learning (ML) models that are compatible with multi-output regression problems are evaluated for the TPSC of the DAB converter. The lookup table that is generally used in TPSC of a DAB converter is replaced with a neural network model, leading to about 99% efficiency. All the proposed methods are tested via simulations in MATLAB-Simulink.","PeriodicalId":185211,"journal":{"name":"2022 IEEE Texas Power and Energy Conference (TPEC)","volume":"33 1-2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC54980.2022.9750772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Control of Dual Active Bridge (DAB) converters can be particularly challenging due to the involvement of multiple parameters such as phase shift, duty cycles, etc. This paper proposes a triple-phase shift control (TPSC) method for the DAB converter. TPSC shows better performance compared to the conventional phase shift control by significantly decreasing the current amount that flows through the high frequency (HF) transformer. Furthermore, different machine learning (ML) models that are compatible with multi-output regression problems are evaluated for the TPSC of the DAB converter. The lookup table that is generally used in TPSC of a DAB converter is replaced with a neural network model, leading to about 99% efficiency. All the proposed methods are tested via simulations in MATLAB-Simulink.
基于机器学习方法的双有源桥式变换器三相移相控制
由于涉及相移、占空比等多个参数,双有源桥(DAB)转换器的控制尤其具有挑战性。提出了一种DAB变换器的三相移相控制方法。与传统的相移控制相比,TPSC通过显著降低流经高频(HF)变压器的电流量,显示出更好的性能。此外,针对DAB转换器的TPSC,评估了与多输出回归问题兼容的不同机器学习(ML)模型。将DAB变换器TPSC中常用的查找表替换为神经网络模型,效率约为99%。在MATLAB-Simulink中对所提方法进行了仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信