{"title":"Hardware Implementation of Predictive Torque Control for an Induction Motor with Efficiency Optimization","authors":"H. Aberkane, D. Sakri, Djamel Djamel","doi":"10.18280/EJEE.230108","DOIUrl":null,"url":null,"abstract":"Induction motors (IM) are widely used in power industry applications, many efforts have been made to enhance their energy efficiency and to reduce environmental pollution for these last reasons, different control techniques have been developed, among them, conventional predictive torque control (PTC) is based on the principle of keeping a constant stator reference flux independently of operating point, such situation generates significant losses and reduces the performance especially when the machine is lightly loaded. In order to maximize induction motor energy performance, the present research proposes an optimization of predictive torque control (OPTC) strategy, based on induction motor loss model (LMC). The aim of LMC technique is to deduce the best flux references to apply to the induction machine in order to minimize the copper and iron losses therefore improve the motor efficiency. So to confirm the theoretical study, experimental tests for various operating conditions of IM are proposed to verify the efficacy of the proposed OPTC. The obtained results show that OPTC decreases the total IM drive losses and ensures a significant increase in efficiency especially when the motor operates outside nominal conditions.","PeriodicalId":340029,"journal":{"name":"European Journal of Electrical Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/EJEE.230108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Induction motors (IM) are widely used in power industry applications, many efforts have been made to enhance their energy efficiency and to reduce environmental pollution for these last reasons, different control techniques have been developed, among them, conventional predictive torque control (PTC) is based on the principle of keeping a constant stator reference flux independently of operating point, such situation generates significant losses and reduces the performance especially when the machine is lightly loaded. In order to maximize induction motor energy performance, the present research proposes an optimization of predictive torque control (OPTC) strategy, based on induction motor loss model (LMC). The aim of LMC technique is to deduce the best flux references to apply to the induction machine in order to minimize the copper and iron losses therefore improve the motor efficiency. So to confirm the theoretical study, experimental tests for various operating conditions of IM are proposed to verify the efficacy of the proposed OPTC. The obtained results show that OPTC decreases the total IM drive losses and ensures a significant increase in efficiency especially when the motor operates outside nominal conditions.