SynSLaG: Synthetic Sign Language Generator

Teppei Miura, Shinji Sako
{"title":"SynSLaG: Synthetic Sign Language Generator","authors":"Teppei Miura, Shinji Sako","doi":"10.1145/3441852.3476519","DOIUrl":null,"url":null,"abstract":"Machine learning techniques have the potential to play an important role in sign language recognition. However, sign language datasets lack the volume and variety necessary to work well. To enlarge these datasets, we introduce SynSLaG, a tool that synthetically generates sign language datasets from 3D motion capture data. SynSLaG generates realistic images of various body shapes with ground truth 2D/3D poses, depth maps, body-part segmentations, optical flows, and surface normals. The large synthetic datasets provide possibilities for advancing sign language recognition and analysis.","PeriodicalId":107277,"journal":{"name":"Proceedings of the 23rd International ACM SIGACCESS Conference on Computers and Accessibility","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International ACM SIGACCESS Conference on Computers and Accessibility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3441852.3476519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning techniques have the potential to play an important role in sign language recognition. However, sign language datasets lack the volume and variety necessary to work well. To enlarge these datasets, we introduce SynSLaG, a tool that synthetically generates sign language datasets from 3D motion capture data. SynSLaG generates realistic images of various body shapes with ground truth 2D/3D poses, depth maps, body-part segmentations, optical flows, and surface normals. The large synthetic datasets provide possibilities for advancing sign language recognition and analysis.
SynSLaG:合成手语生成器
机器学习技术有潜力在手语识别中发挥重要作用。然而,手语数据集缺乏足够的数量和多样性。为了扩大这些数据集,我们引入了SynSLaG,这是一个从3D动作捕捉数据合成手语数据集的工具。SynSLaG生成各种身体形状的逼真图像,具有地面真实的2D/3D姿势,深度图,身体部分分割,光流和表面法线。大型合成数据集为推进手语识别和分析提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信