C. Bovet, A. Burns, F. Méot, M. Placidi, E. Rossa, J. de Vries
{"title":"Synchrotron radiation interferences between small dipoles at LEP","authors":"C. Bovet, A. Burns, F. Méot, M. Placidi, E. Rossa, J. de Vries","doi":"10.1109/PAC.1997.751082","DOIUrl":null,"url":null,"abstract":"Synchrotron radiation interferences between small dipoles in the very low (visible) frequency range have been studied at the LEP diagnostic mini-wiggler. Their understanding allowed a substantial brightness gain by adequate layout modifications. The phenomenon is described analytically in terms of time coherence effects. This serves as a basis for further detailed numerical simulations of the experiment by means of stepwise ray-tracing, and allows precise interpretation of the spectral, polarization and intensity measurements collected at LEP. It also provides guidelines for SR diagnostic at the injection energy in LHC.","PeriodicalId":122662,"journal":{"name":"Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1997.751082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Synchrotron radiation interferences between small dipoles in the very low (visible) frequency range have been studied at the LEP diagnostic mini-wiggler. Their understanding allowed a substantial brightness gain by adequate layout modifications. The phenomenon is described analytically in terms of time coherence effects. This serves as a basis for further detailed numerical simulations of the experiment by means of stepwise ray-tracing, and allows precise interpretation of the spectral, polarization and intensity measurements collected at LEP. It also provides guidelines for SR diagnostic at the injection energy in LHC.