Unified Moment-Based Modelling of Integrated Stochastic Processes

I. Kyriakou, R. Brignone, Gianluca Fusai
{"title":"Unified Moment-Based Modelling of Integrated Stochastic Processes","authors":"I. Kyriakou, R. Brignone, Gianluca Fusai","doi":"10.2139/ssrn.3893758","DOIUrl":null,"url":null,"abstract":"In this paper we present a new general method for simulating integrals of stochastic processes. We focus on the nontrivial case of time integrals conditional on the state variable levels at the endpoints of a time interval, based on a moment-based probability distribution construction. We present different classes of models with important usages in finance, medicine, epidemiology, climatology, bioeconomics and physics. We highlight the benefits of our method and benchmark its performance against existing schemes.","PeriodicalId":404477,"journal":{"name":"Mechanical Engineering eJournal","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3893758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we present a new general method for simulating integrals of stochastic processes. We focus on the nontrivial case of time integrals conditional on the state variable levels at the endpoints of a time interval, based on a moment-based probability distribution construction. We present different classes of models with important usages in finance, medicine, epidemiology, climatology, bioeconomics and physics. We highlight the benefits of our method and benchmark its performance against existing schemes.
基于统一矩的集成随机过程建模
本文提出了一种新的模拟随机过程积分的通用方法。基于基于矩的概率分布构造,我们关注时间积分在时间区间端点的状态变量水平条件下的非平凡情况。我们介绍了在金融、医学、流行病学、气候学、生物经济学和物理学中具有重要用途的不同类型的模型。我们强调了我们的方法的好处,并对现有方案的性能进行了基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信