{"title":"Solve a Constraint Problem without Modeling It","authors":"C. Bessiere, Rémi Coletta, Nadjib Lazaar","doi":"10.1109/ICTAI.2014.12","DOIUrl":null,"url":null,"abstract":"We study how to find a solution to a constraint problem without modeling it. Constraint acquisition systems such as Conacq or ModelSeeker are not able to solve a single instance of a problem because they require positive examples to learn. The recent QuAcq algorithm for constraint acquisition does not require positive examples to learn a constraint network. It is thus able to solve a constraint problem without modeling it: we simply exit from QuAcq as soon as a complete example is classified as positive by the user. In this paper, we propose ASK&SOLVE, an elicitation-based solver that tries to find the best trade off between learning and solving to converge as soon as possible on a solution. We propose several strategies to speed-up ASK&SOLVE. Finally we give an experimental evaluation that shows that our approach improves the state of the art.","PeriodicalId":142794,"journal":{"name":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 26th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2014.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We study how to find a solution to a constraint problem without modeling it. Constraint acquisition systems such as Conacq or ModelSeeker are not able to solve a single instance of a problem because they require positive examples to learn. The recent QuAcq algorithm for constraint acquisition does not require positive examples to learn a constraint network. It is thus able to solve a constraint problem without modeling it: we simply exit from QuAcq as soon as a complete example is classified as positive by the user. In this paper, we propose ASK&SOLVE, an elicitation-based solver that tries to find the best trade off between learning and solving to converge as soon as possible on a solution. We propose several strategies to speed-up ASK&SOLVE. Finally we give an experimental evaluation that shows that our approach improves the state of the art.