Optimizing Protein Search Engines using Particle Swarm Optimization

Majdi Maabreh, Basheer Qolomany, Ajay K. Gupta, James R. Springstead
{"title":"Optimizing Protein Search Engines using Particle Swarm Optimization","authors":"Majdi Maabreh, Basheer Qolomany, Ajay K. Gupta, James R. Springstead","doi":"10.1109/BIBE.2017.00-31","DOIUrl":null,"url":null,"abstract":"The results of protein search engines depend mainly upon a set of parameters that adjust the searching space. One of the most effective parameters is the peptide mass window tolerance (w). Most of the current search engines use a constant user-defined value for this parameter. As an alternative option, Comet search engine designers proposed a statistical technique to estimate the best tolerance window for an input spectra file. However, this technique sometimes fails in picking a value, may set the parameter to a value that results in a loss of many correct matches, and is available only for one type of mass; namely ppm. In this paper, we propose to use particle swarm optimization (PSO) to improve the coverage of search engines by picking the optimal value for this influential parameter to maximize PSMs. Our results show that this biologically-inspired algorithm can be utilized to find peptide mass window tolerance values that facilitate Comet to increase peptide spectra matches, resulting in improved peptide identification. We also show experimental evidence that an open search (i.e., wide tolerance window) does not always optimize spectra matching using the current search engines and that narrow tolerance windows improve the coverage of protein search engines.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.00-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The results of protein search engines depend mainly upon a set of parameters that adjust the searching space. One of the most effective parameters is the peptide mass window tolerance (w). Most of the current search engines use a constant user-defined value for this parameter. As an alternative option, Comet search engine designers proposed a statistical technique to estimate the best tolerance window for an input spectra file. However, this technique sometimes fails in picking a value, may set the parameter to a value that results in a loss of many correct matches, and is available only for one type of mass; namely ppm. In this paper, we propose to use particle swarm optimization (PSO) to improve the coverage of search engines by picking the optimal value for this influential parameter to maximize PSMs. Our results show that this biologically-inspired algorithm can be utilized to find peptide mass window tolerance values that facilitate Comet to increase peptide spectra matches, resulting in improved peptide identification. We also show experimental evidence that an open search (i.e., wide tolerance window) does not always optimize spectra matching using the current search engines and that narrow tolerance windows improve the coverage of protein search engines.
利用粒子群优化技术优化蛋白质搜索引擎
蛋白质搜索引擎的结果主要依赖于一组参数来调整搜索空间。最有效的参数之一是肽质量窗口容限(w)。目前大多数搜索引擎使用恒定的用户自定义值作为该参数。作为一种替代方案,Comet搜索引擎设计者提出了一种统计技术来估计输入光谱文件的最佳容忍窗口。然而,这种技术有时在选择一个值时失败,可能会将参数设置为一个值,导致许多正确匹配的损失,并且只适用于一种类型的质量;即ppm。在本文中,我们提出使用粒子群优化(PSO)来提高搜索引擎的覆盖率,通过选择影响参数的最优值来最大化PSO。我们的研究结果表明,这种受生物学启发的算法可以用来寻找肽质量窗口耐受性值,从而促进Comet增加肽谱匹配,从而提高肽识别。我们还展示了实验证据,表明开放搜索(即宽容忍窗口)并不总是使用当前搜索引擎优化光谱匹配,而窄容忍窗口提高了蛋白质搜索引擎的覆盖范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信