EXIMIUS

Zhou Qin, Zhihan Fang, Yunhuai Liu, Chang Tan, Wei Chang, Desheng Zhang
{"title":"EXIMIUS","authors":"Zhou Qin, Zhihan Fang, Yunhuai Liu, Chang Tan, Wei Chang, Desheng Zhang","doi":"10.1145/3274783.3274850","DOIUrl":null,"url":null,"abstract":"Urban traffic sensing has been investigated extensively by different real-time sensing approaches due to important applications such as navigation and emergency services. Basically, the existing traffic sensing approaches can be classified into two categories, i.e., explicit and implicit sensing. In this paper, we design a measurement framework called EXIMIUS for a large-scale data-driven study to investigate the strengths and weaknesses of these two sensing approaches by using two particular systems for traffic sensing as concrete examples, i.e., a vehicular system as a crowdsourcing-based explicit sensing and a cellular system as an infrastructure-based implicit sensing. In our investigation, we utilize TB-level data from two systems: (i) vehicle GPS data from 3 thousand private cars and 2 thousand commercial vehicles, (ii) cellular signaling data from 3 million cellphone users, from the Chinese city Hefei. Our study adopts a widely-used concept called crowdedness level to rigorously explore the impacts of various spatiotemporal contexts on real-time traffic conditions including population density, region functions, road categories, rush hours, etc. based on a wide range of context data. We quantify the strengths and weaknesses of these two sensing approaches in different scenarios then we explore the possibility of unifying these two sensing approaches for better performance. Our results provide a few valuable insights for urban sensing based on explicit and implicit data from transportation and telecommunication domains.","PeriodicalId":156307,"journal":{"name":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274783.3274850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Urban traffic sensing has been investigated extensively by different real-time sensing approaches due to important applications such as navigation and emergency services. Basically, the existing traffic sensing approaches can be classified into two categories, i.e., explicit and implicit sensing. In this paper, we design a measurement framework called EXIMIUS for a large-scale data-driven study to investigate the strengths and weaknesses of these two sensing approaches by using two particular systems for traffic sensing as concrete examples, i.e., a vehicular system as a crowdsourcing-based explicit sensing and a cellular system as an infrastructure-based implicit sensing. In our investigation, we utilize TB-level data from two systems: (i) vehicle GPS data from 3 thousand private cars and 2 thousand commercial vehicles, (ii) cellular signaling data from 3 million cellphone users, from the Chinese city Hefei. Our study adopts a widely-used concept called crowdedness level to rigorously explore the impacts of various spatiotemporal contexts on real-time traffic conditions including population density, region functions, road categories, rush hours, etc. based on a wide range of context data. We quantify the strengths and weaknesses of these two sensing approaches in different scenarios then we explore the possibility of unifying these two sensing approaches for better performance. Our results provide a few valuable insights for urban sensing based on explicit and implicit data from transportation and telecommunication domains.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信