CANDECOMP/PARAFAC decomposition based multi-dimensional nonuniform harmonic retrieval

Fuxi Wen, W. Liu
{"title":"CANDECOMP/PARAFAC decomposition based multi-dimensional nonuniform harmonic retrieval","authors":"Fuxi Wen, W. Liu","doi":"10.1109/ICDSP.2016.7868539","DOIUrl":null,"url":null,"abstract":"Two CANDECOMP/PARAFAC decomposition based multi-dimensional nonuniform harmonic retrieval algorithms are derived, which are referred to as search efficient Tensor-MUSIC (SE-T-MUSIC) and generalized Tensor-ESPRIT (G-T-ESPRIT). Comparing with the conventional Tensor-MUSIC algorithm, SE-T-MUSIC reduces the computational complexity significantly in terms of the number of searching grids. On the other hand, G-T-ESPRIT is a search-free polynomial rooting based algorithm. It is a R-dimensional generalization of the conventional generalized ESPRIT approach and multidimensional optimization is not required. Furthermore, a CP decomposition based combinatorial search method is proposed to associate the estimated frequencies over R dimensions.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Two CANDECOMP/PARAFAC decomposition based multi-dimensional nonuniform harmonic retrieval algorithms are derived, which are referred to as search efficient Tensor-MUSIC (SE-T-MUSIC) and generalized Tensor-ESPRIT (G-T-ESPRIT). Comparing with the conventional Tensor-MUSIC algorithm, SE-T-MUSIC reduces the computational complexity significantly in terms of the number of searching grids. On the other hand, G-T-ESPRIT is a search-free polynomial rooting based algorithm. It is a R-dimensional generalization of the conventional generalized ESPRIT approach and multidimensional optimization is not required. Furthermore, a CP decomposition based combinatorial search method is proposed to associate the estimated frequencies over R dimensions.
基于CANDECOMP/PARAFAC分解的多维非均匀谐波检索
推导了基于CANDECOMP/PARAFAC分解的二维非均匀谐波检索算法,分别为搜索高效张量- music (SE-T-MUSIC)和广义张量- esprit (G-T-ESPRIT)。与传统的Tensor-MUSIC算法相比,SE-T-MUSIC算法在搜索网格数量方面显著降低了计算复杂度。另一方面,G-T-ESPRIT是一种基于无搜索多项式生根的算法。它是传统广义ESPRIT方法的r维推广,不需要进行多维优化。在此基础上,提出了一种基于CP分解的组合搜索方法来关联R维上的估计频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信