{"title":"Uniform Steiner bundles","authors":"Simone Marchesi, R. Mir'o-Roig","doi":"10.5802/AIF.3403","DOIUrl":null,"url":null,"abstract":"In this work we study $k$-type uniform Steiner bundles, being $k$ the lowest degree of the splitting. We prove sharp upper and lower bounds for the rank in the case $k=1$ and moreover we give families of examples for every allowed possible rank and explain which relation exists between the families. After dealing with the case $k$ in general, we conjecture that every $k$-type uniform Steiner bundle is obtained through the proposed construction technique.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"5 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/AIF.3403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work we study $k$-type uniform Steiner bundles, being $k$ the lowest degree of the splitting. We prove sharp upper and lower bounds for the rank in the case $k=1$ and moreover we give families of examples for every allowed possible rank and explain which relation exists between the families. After dealing with the case $k$ in general, we conjecture that every $k$-type uniform Steiner bundle is obtained through the proposed construction technique.