Deep Convolutional AutoEncoder-based Lossy Image Compression

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, J. Katto
{"title":"Deep Convolutional AutoEncoder-based Lossy Image Compression","authors":"Zhengxue Cheng, Heming Sun, Masaru Takeuchi, J. Katto","doi":"10.1109/PCS.2018.8456308","DOIUrl":null,"url":null,"abstract":"Image compression has been investigated as a fundamental research topic for many decades. Recently, deep learning has achieved great success in many computer vision tasks, and is gradually being used in image compression. In this paper, we present a lossy image compression architecture, which utilizes the advantages of convolutional autoencoder (CAE) to achieve a high coding efficiency. First, we design a novel CAE architecture to replace the conventional transforms and train this CAE using a rate-distortion loss function. Second, to generate a more energy-compact representation, we utilize the principal components analysis (PCA) to rotate the feature maps produced by the CAE, and then apply the quantization and entropy coder to generate the codes. Experimental results demonstrate that our method outperforms traditional image coding algorithms, by achieving a 13.7% BD-rate decrement on the Kodak database images compared to JPEG2000. Besides, our method maintains a moderate complexity similar to JPEG2000.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

Abstract

Image compression has been investigated as a fundamental research topic for many decades. Recently, deep learning has achieved great success in many computer vision tasks, and is gradually being used in image compression. In this paper, we present a lossy image compression architecture, which utilizes the advantages of convolutional autoencoder (CAE) to achieve a high coding efficiency. First, we design a novel CAE architecture to replace the conventional transforms and train this CAE using a rate-distortion loss function. Second, to generate a more energy-compact representation, we utilize the principal components analysis (PCA) to rotate the feature maps produced by the CAE, and then apply the quantization and entropy coder to generate the codes. Experimental results demonstrate that our method outperforms traditional image coding algorithms, by achieving a 13.7% BD-rate decrement on the Kodak database images compared to JPEG2000. Besides, our method maintains a moderate complexity similar to JPEG2000.
基于深度卷积自动编码器的有损图像压缩
图像压缩作为一个基础研究课题已经进行了几十年的研究。近年来,深度学习在许多计算机视觉任务中取得了巨大的成功,并逐渐应用于图像压缩。在本文中,我们提出了一种有损图像压缩架构,利用卷积自编码器(CAE)的优点来实现高编码效率。首先,我们设计了一种新的CAE架构来取代传统的变换,并使用率失真损失函数来训练该CAE。其次,为了生成更紧凑的能量表示,我们利用主成分分析(PCA)来旋转CAE生成的特征映射,然后应用量化和熵编码器来生成代码。实验结果表明,我们的方法优于传统的图像编码算法,与JPEG2000相比,柯达数据库图像的bd率降低了13.7%。此外,我们的方法保持了类似于JPEG2000的中等复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信