An Improved MPPT Technique Under Partial Shading Condition Using Simple P&O Algorithm

Boni Satya Varun Sai, Sarang A. Khadtare, D. Chatterjee
{"title":"An Improved MPPT Technique Under Partial Shading Condition Using Simple P&O Algorithm","authors":"Boni Satya Varun Sai, Sarang A. Khadtare, D. Chatterjee","doi":"10.1109/CISPSSE49931.2020.9212234","DOIUrl":null,"url":null,"abstract":"Partial shading (PS) affects the productivity of power generation in the photovoltaic system. During PS condition, PV panel shows multiple peaks in power-voltage (P- V) and current-voltage (I-V) characteristics, making conventional Maximum Power Point Tracking (MPPT) algorithms like Perturb and observe (P&O) method, Incremental conductance (I&C) method etc., fails to extract maximum power. Optimization based techniques like Particle swarm optimization (PSO), Cuckoo Search (CS) and Maximum power point scanning (MPPS) methods etc., can perform an active monitoring of maximum power under PS condition. Since, optimization-based systems are complex and time-consuming, in this paper an improved MPPT is proposed for tracking maximum power under PS condition. The Proposed MPPT method does not require any computational burden, making it more compatible for real time with good tracking efficiency. The proposed MPPT is verified for 3S configuration with various shading patterns showed satisfactory results with excellent dynamic behaviour and very high tracking efficiency.","PeriodicalId":247843,"journal":{"name":"2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISPSSE49931.2020.9212234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Partial shading (PS) affects the productivity of power generation in the photovoltaic system. During PS condition, PV panel shows multiple peaks in power-voltage (P- V) and current-voltage (I-V) characteristics, making conventional Maximum Power Point Tracking (MPPT) algorithms like Perturb and observe (P&O) method, Incremental conductance (I&C) method etc., fails to extract maximum power. Optimization based techniques like Particle swarm optimization (PSO), Cuckoo Search (CS) and Maximum power point scanning (MPPS) methods etc., can perform an active monitoring of maximum power under PS condition. Since, optimization-based systems are complex and time-consuming, in this paper an improved MPPT is proposed for tracking maximum power under PS condition. The Proposed MPPT method does not require any computational burden, making it more compatible for real time with good tracking efficiency. The proposed MPPT is verified for 3S configuration with various shading patterns showed satisfactory results with excellent dynamic behaviour and very high tracking efficiency.
基于简单P&O算法的部分遮阳条件下改进的MPPT技术
部分遮阳(PS)影响光伏系统的发电效率。在PS状态下,光伏板的功率电压(P- V)和电流电压(I-V)特性出现多个峰值,使得传统的最大功率点跟踪(MPPT)算法如Perturb和observe (P&O)法、增量电导(I&C)法等无法提取最大功率。基于粒子群优化(PSO)、布谷鸟搜索(CS)和最大功率点扫描(MPPS)方法等优化技术,可以对最大功率状态下的最大功率进行主动监测。由于基于优化的系统复杂且耗时,本文提出了一种改进的MPPT来跟踪PS条件下的最大功率。所提出的MPPT方法不需要任何计算负担,使其更符合实时性,具有良好的跟踪效率。本文提出的MPPT在不同遮光模式的3S配置下进行了验证,结果令人满意,具有良好的动态性能和很高的跟踪效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信