2QoSM: A Q-Learner QoS Manager for Application-Guided Power-Aware Systems

Michael J. Giardino, D. Schwyn, Bonnie H. Ferri, A. Ferri
{"title":"2QoSM: A Q-Learner QoS Manager for Application-Guided Power-Aware Systems","authors":"Michael J. Giardino, D. Schwyn, Bonnie H. Ferri, A. Ferri","doi":"10.1109/MCSoC51149.2021.00040","DOIUrl":null,"url":null,"abstract":"This paper describes the design and performance of Q-learning-based quality-of-service manager (2QoSM) for compute-aware applications (CAAs) as part of platform-agnostic resource management framework. CAAs and hardware are able to share metrics of performance with the 2QoSM and the 2QoSM can attempt to reconfigure CAAs and hardware to meet performance targets. This enables many co-design benefits while allowing for policy and platform portability. The use of Q-Learning allows online generation of the power management policy without requiring details about system state or actions, and can meet different goals including error, power minimization, or a combination of both. 2QoSM, evaluated using an embedded MCSoC controlling a mobile robot, reduces power compared to the Linux on-demand governor by 38.7-42.6% and a situation-aware governor by 4.0-10.2%. An error-minimization policy obtained a reduction in path-following error of 4.6-8.9%.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the design and performance of Q-learning-based quality-of-service manager (2QoSM) for compute-aware applications (CAAs) as part of platform-agnostic resource management framework. CAAs and hardware are able to share metrics of performance with the 2QoSM and the 2QoSM can attempt to reconfigure CAAs and hardware to meet performance targets. This enables many co-design benefits while allowing for policy and platform portability. The use of Q-Learning allows online generation of the power management policy without requiring details about system state or actions, and can meet different goals including error, power minimization, or a combination of both. 2QoSM, evaluated using an embedded MCSoC controlling a mobile robot, reduces power compared to the Linux on-demand governor by 38.7-42.6% and a situation-aware governor by 4.0-10.2%. An error-minimization policy obtained a reduction in path-following error of 4.6-8.9%.
qosm:面向应用导向的功率感知系统的Q-Learner QoS管理器
本文描述了计算感知应用(CAAs)中基于q学习的服务质量管理器(2QoSM)的设计和性能,并将其作为平台无关的资源管理框架的一部分。CAAs和硬件能够与2QoSM共享性能指标,2QoSM可以尝试重新配置CAAs和硬件以满足性能目标。这在允许策略和平台可移植性的同时实现了许多协同设计的好处。Q-Learning的使用允许在线生成电源管理策略,而不需要关于系统状态或操作的详细信息,并且可以满足不同的目标,包括错误,功率最小化或两者的组合。2QoSM使用嵌入式MCSoC控制移动机器人进行评估,与Linux按需调控器相比,功耗降低38.7-42.6%,与态势感知调控器相比,功耗降低4.0-10.2%。错误最小化策略使路径跟踪错误减少了4.6-8.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信