Interpreting mereotopological connection

Nat Gan
{"title":"Interpreting mereotopological connection","authors":"Nat Gan","doi":"10.26686/ajl.v20i1.8004","DOIUrl":null,"url":null,"abstract":"This paper examines ten possible topological interpretations of connection and for each interpretation, identifies sufficient conditions under which a significant class of topological spaces provides models of General Extensional Mereotopology with Closure Conditions (GEMTC) in which some key mereotopological ideas align with their topological analogues. In particular, there is an interpretation under which the non-empty sets of any symmetric topology are a model of GEMTC with alignment between the mereotopological and topological definitions of (self-)connection, open and closed entities, interior, exterior, closure, and boundary.","PeriodicalId":367849,"journal":{"name":"The Australasian Journal of Logic","volume":"440 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Australasian Journal of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26686/ajl.v20i1.8004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines ten possible topological interpretations of connection and for each interpretation, identifies sufficient conditions under which a significant class of topological spaces provides models of General Extensional Mereotopology with Closure Conditions (GEMTC) in which some key mereotopological ideas align with their topological analogues. In particular, there is an interpretation under which the non-empty sets of any symmetric topology are a model of GEMTC with alignment between the mereotopological and topological definitions of (self-)connection, open and closed entities, interior, exterior, closure, and boundary.
解释微拓扑联系
本文研究了连接的十种可能的拓扑解释,并为每种解释确定了足够的条件,在这些条件下,一类重要的拓扑空间提供了具有闭包条件(GEMTC)的一般扩展元拓扑模型,其中一些关键的元拓扑思想与其拓扑类似物对齐。特别是,有一种解释认为,任何对称拓扑的非空集都是(自)连接、开放和封闭实体、内部、外部、封闭和边界的元拓扑和拓扑定义之间对齐的GEMTC模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信