Machine learning for BCI: towards analysing cognition

K. Müller
{"title":"Machine learning for BCI: towards analysing cognition","authors":"K. Müller","doi":"10.1109/IWW-BCI.2016.7457453","DOIUrl":null,"url":null,"abstract":"This article discusses machine learning and BCI with a focus on analysing cognition, a topic that has been extensively covered by the author and co-workers in numerous papers and conference papers. Due to the review character of the presentation, a high overlap with the above-mentioned contributions is unavoidable. When analysing cognition, it is often useful to combine information from various modalities (see e.g. Biessmann et al., 2011, Sui et al., 2012). In BCI recently multimodal fusion concepts have received great attention under the label hybrid BCI (Pfurtscheller et al., 2010, Müller-Putz et al. 2015, Dähne et al. 2015, Fazli et al. 2015) or as data analysis technique for extracting (non-) linear relations between data (see e.g. Biessmann et al., 2010, Biessmann et al., 2011, Fazli et al., 2009, 2011, 2012, Dähne et al., 2013, 2014a,b, 2015, Winkler et al. 2015). They are rooted in the modern machine learning and signal processing techniques that are now available for analysing EEG, for decoding mental states etc. (see Müller et al. 2008, Bünau et al. 2009, Tomioka and Müller, 2010, Blankertz et al., 2008, 2011, Lemm et al., 2011, Porbadnigk et al. 2015 for recent reviews and contributions to Machine Learning for BCI, see Samek et al. 2014 for a review on robust methods). Note that fusing information has also been a very common practice in the sciences and engineering (Waltz and Llinas, 1990). The talk will discuss a number of recent contributions from the BBCI group that have helped to broaden the spectrum of applicability for Brain Computer Interfaces and mental state monitoring in particular and for analysis of neuroimaging data in general. I will introduce a novel reliable method for estimating the Hurst exponent, a quantity that has recently become popular for describing network properties and is being used for diagnostic purposes (cf. Blythe et al. 2014). It is applied to estimate and analyse cognitive properties in neurophysiological data from BCI experiments (Samek et al. 2016). Furthermore if time permits I will discuss a recent attractive application of BCI in the context of video coding (Scholler et al. 2012 and Acqualagna et al 2015).","PeriodicalId":208670,"journal":{"name":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2016.7457453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article discusses machine learning and BCI with a focus on analysing cognition, a topic that has been extensively covered by the author and co-workers in numerous papers and conference papers. Due to the review character of the presentation, a high overlap with the above-mentioned contributions is unavoidable. When analysing cognition, it is often useful to combine information from various modalities (see e.g. Biessmann et al., 2011, Sui et al., 2012). In BCI recently multimodal fusion concepts have received great attention under the label hybrid BCI (Pfurtscheller et al., 2010, Müller-Putz et al. 2015, Dähne et al. 2015, Fazli et al. 2015) or as data analysis technique for extracting (non-) linear relations between data (see e.g. Biessmann et al., 2010, Biessmann et al., 2011, Fazli et al., 2009, 2011, 2012, Dähne et al., 2013, 2014a,b, 2015, Winkler et al. 2015). They are rooted in the modern machine learning and signal processing techniques that are now available for analysing EEG, for decoding mental states etc. (see Müller et al. 2008, Bünau et al. 2009, Tomioka and Müller, 2010, Blankertz et al., 2008, 2011, Lemm et al., 2011, Porbadnigk et al. 2015 for recent reviews and contributions to Machine Learning for BCI, see Samek et al. 2014 for a review on robust methods). Note that fusing information has also been a very common practice in the sciences and engineering (Waltz and Llinas, 1990). The talk will discuss a number of recent contributions from the BBCI group that have helped to broaden the spectrum of applicability for Brain Computer Interfaces and mental state monitoring in particular and for analysis of neuroimaging data in general. I will introduce a novel reliable method for estimating the Hurst exponent, a quantity that has recently become popular for describing network properties and is being used for diagnostic purposes (cf. Blythe et al. 2014). It is applied to estimate and analyse cognitive properties in neurophysiological data from BCI experiments (Samek et al. 2016). Furthermore if time permits I will discuss a recent attractive application of BCI in the context of video coding (Scholler et al. 2012 and Acqualagna et al 2015).
脑机接口的机器学习:走向认知分析
本文讨论了机器学习和脑机接口,重点是分析认知,这是一个被作者和同事在许多论文和会议论文中广泛讨论的主题。由于报告的评论性质,与上述贡献的高度重叠是不可避免的。在分析认知时,将来自不同模式的信息结合起来通常是有用的(参见Biessmann et al., 2011, Sui et al., 2012)。在脑机接口中,最近多模态融合概念在混合脑机接口标签下受到了极大的关注(Pfurtscheller等人,2010年,meller - putz等人,2015年,Dähne等人,2015年,Fazli等人,2015年)或作为提取数据之间(非线性)线性关系的数据分析技术(参见Biessmann等人,2010年,Biessmann等人,2011年,Fazli等人,2009年,2011年,2012年,Dähne等人,2013年,2014a,b, 2015年,Winkler等人,2015年)。它们根植于现代机器学习和信号处理技术,现在可用于分析脑电图,解码精神状态等(见m等人2008年,b瑙等人2009年,Tomioka和m等人,2010年,Blankertz等人,2008年,2011年,Lemm等人,2011年,Porbadnigk等人2015年最近的评论和对BCI机器学习的贡献,见Samek等人2014年关于鲁棒方法的评论)。请注意,融合信息在科学和工程领域也是一种非常常见的做法(Waltz和Llinas, 1990)。讲座将讨论BBCI小组最近的一些贡献,这些贡献有助于扩大脑机接口的适用性范围,特别是精神状态监测,以及一般的神经成像数据分析。我将介绍一种新的可靠方法来估计赫斯特指数,赫斯特指数最近在描述网络属性时变得流行,并被用于诊断目的(参见Blythe et al. 2014)。它被用于估计和分析脑机接口实验中神经生理学数据的认知特性(Samek et al. 2016)。此外,如果时间允许,我将讨论最近在视频编码背景下BCI的一个有吸引力的应用(Scholler et al. 2012和Acqualagna et al. 2015)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信