Heterogeneous Edge CNN Hardware Accelerator

M. Moudgill, C. Glossner, Wei Huang, Chao Tian, Chunxia Xu, Nianliang Yang, Lei Wang, Tailin Liang, Shaobo Shi, Xiaodong Zhang, D. Iancu, G. Nacer, Kerry Li
{"title":"Heterogeneous Edge CNN Hardware Accelerator","authors":"M. Moudgill, C. Glossner, Wei Huang, Chao Tian, Chunxia Xu, Nianliang Yang, Lei Wang, Tailin Liang, Shaobo Shi, Xiaodong Zhang, D. Iancu, G. Nacer, Kerry Li","doi":"10.1109/WCSP49889.2020.9299736","DOIUrl":null,"url":null,"abstract":"We describe a programmable and scalable Convolutional Neural Network (CNN) hardware accelerator optimized for mobile and edge inference computing. The accelerator is comprised of 4 heterogeneous engines - input engine, filter engine, post processing engine, and output engine. The specialized engines execute independently and concurrently. All engines have a core set of common instructions with each engine further specialized for specific functions. We describe the operation of each engine and provide silicon validated results for a number of CNN networks including LeNet-5, TinySSD, and SqueezeNet. We describe a blind modulation detection application using SqueezeNet. The accelerator has been fabricated in 28nm CMOS and runs at 1GHz. The logic consumes 0.6 mm2 and the fully hardened core with 2MB of SRAM including built-in self-test consumes 9.36mm2. The accelerator’s filter engine implements 288 f16 multipliers thereby achieving 288 GFLOPS at 1GHz. Two TOPS of peak performance is achieved with all engines running in parallel. The accelerator including SRAM dissipates 193mW running LeNet-5 at room temperature.","PeriodicalId":447160,"journal":{"name":"2020 International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP49889.2020.9299736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We describe a programmable and scalable Convolutional Neural Network (CNN) hardware accelerator optimized for mobile and edge inference computing. The accelerator is comprised of 4 heterogeneous engines - input engine, filter engine, post processing engine, and output engine. The specialized engines execute independently and concurrently. All engines have a core set of common instructions with each engine further specialized for specific functions. We describe the operation of each engine and provide silicon validated results for a number of CNN networks including LeNet-5, TinySSD, and SqueezeNet. We describe a blind modulation detection application using SqueezeNet. The accelerator has been fabricated in 28nm CMOS and runs at 1GHz. The logic consumes 0.6 mm2 and the fully hardened core with 2MB of SRAM including built-in self-test consumes 9.36mm2. The accelerator’s filter engine implements 288 f16 multipliers thereby achieving 288 GFLOPS at 1GHz. Two TOPS of peak performance is achieved with all engines running in parallel. The accelerator including SRAM dissipates 193mW running LeNet-5 at room temperature.
异构边缘CNN硬件加速器
我们描述了一种针对移动和边缘推理计算优化的可编程和可扩展卷积神经网络(CNN)硬件加速器。该加速器由4个异构引擎组成:输入引擎、过滤引擎、后处理引擎和输出引擎。专门的引擎独立且并发地执行。所有的引擎都有一个核心的通用指令集,每个引擎进一步专门为特定的功能。我们描述了每个引擎的操作,并为包括LeNet-5, TinySSD和SqueezeNet在内的许多CNN网络提供了硅验证结果。我们描述了一个使用SqueezeNet的盲调制检测应用。该加速器采用28nm CMOS制造,运行频率为1GHz。逻辑消耗0.6 mm2,完全硬化的核心,2MB SRAM(包括内置自检)消耗9.36mm2。加速器的滤波引擎实现了288 f16乘法器,从而在1GHz下实现了288 GFLOPS。在所有发动机并行运行的情况下,达到峰值性能的两个TOPS。包含SRAM的加速器在室温下运行LeNet-5耗散193mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信