Numerical Analysis of Nonlinear Wave Loads on an Offshore Wind Turbine Monopile

Xingya Feng, R. Willden, Binzhen Zhou, T. Adcock
{"title":"Numerical Analysis of Nonlinear Wave Loads on an Offshore Wind Turbine Monopile","authors":"Xingya Feng, R. Willden, Binzhen Zhou, T. Adcock","doi":"10.1115/omae2019-95161","DOIUrl":null,"url":null,"abstract":"\n Highly nonlinear extreme waves are the major, often the dominant, environmental load on offshore wind turbines. The higher-order ‘ringing’ loads associated with the nonlinear waves can cause unexpected resonance of the monopile. Hydrodynamic analysis of these harmonic loads remains a challenge due to the difficulty in extracting the bound harmonics from the force spectrum in an extreme wave event. A phase manipulation approach (four-phase combination) has been recently demonstrated to be able to separate the higher harmonic components of the wave loads in tank tests. In this work, we employ a fully nonlinear potential flow based Numerical Wave Tank (NWT) to simulate the wave diffraction by a fixed vertical column. We present a detailed study of our checks on the numerical accuracy of our model. Phase control is implemented for the wavemaker to manipulate the phase of each wave component. Focused wave groups are generated to represent the incoming extreme waves. With the four-phase decomposition, the higher harmonics of the wave loads are shown to be clearly separated. Comparisons with the existing test results show fairly good agreement at higher harmonics. The structure of the harmonic forces and moments are analysed and we reconstruct the higher harmonics based on the Stokes expansion assumption using the linear force. In addition, the effects of wave steepness on the harmonic components are discussed.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Highly nonlinear extreme waves are the major, often the dominant, environmental load on offshore wind turbines. The higher-order ‘ringing’ loads associated with the nonlinear waves can cause unexpected resonance of the monopile. Hydrodynamic analysis of these harmonic loads remains a challenge due to the difficulty in extracting the bound harmonics from the force spectrum in an extreme wave event. A phase manipulation approach (four-phase combination) has been recently demonstrated to be able to separate the higher harmonic components of the wave loads in tank tests. In this work, we employ a fully nonlinear potential flow based Numerical Wave Tank (NWT) to simulate the wave diffraction by a fixed vertical column. We present a detailed study of our checks on the numerical accuracy of our model. Phase control is implemented for the wavemaker to manipulate the phase of each wave component. Focused wave groups are generated to represent the incoming extreme waves. With the four-phase decomposition, the higher harmonics of the wave loads are shown to be clearly separated. Comparisons with the existing test results show fairly good agreement at higher harmonics. The structure of the harmonic forces and moments are analysed and we reconstruct the higher harmonics based on the Stokes expansion assumption using the linear force. In addition, the effects of wave steepness on the harmonic components are discussed.
海上风力机单桩非线性波浪荷载的数值分析
高度非线性的极端波浪是海上风力涡轮机的主要,通常是主要的环境负荷。与非线性波相关的高阶“振铃”载荷会引起单桩的非预期共振。这些谐波载荷的水动力分析仍然是一个挑战,因为很难从极端波浪事件的力谱中提取束缚谐波。一种相位操纵方法(四相组合)最近被证明能够在坦克试验中分离波浪载荷的高谐波分量。在这项工作中,我们采用了一个基于全非线性势流的数值波槽(NWT)来模拟固定垂直柱的波衍射。我们详细研究了我们对模型数值精度的检查。相位控制是由造波器来控制每个波分量的相位。集中的波群被生成来代表进入的极端波。通过四相分解,波浪荷载的高次谐波明显分离。与现有的测试结果比较表明,在高次谐波下,该方法具有较好的一致性。分析了谐波力和矩的结构,并基于Stokes展开假设,利用线性力重构了高次谐波。此外,还讨论了波浪陡度对谐波分量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信