An Empirical Study of Remaining Useful Life Prediction using Deep Learning Models

Hyungi Lee, Nac-Woo Kim, Jungi Lee, Byung-Tak Lee
{"title":"An Empirical Study of Remaining Useful Life Prediction using Deep Learning Models","authors":"Hyungi Lee, Nac-Woo Kim, Jungi Lee, Byung-Tak Lee","doi":"10.1109/ICTC55196.2022.9952686","DOIUrl":null,"url":null,"abstract":"An accurate remaining useful life (RUL) prediction is critical for successful operation of a target system. In pursuing a better method for RUL prediction, in this paper, we consider three well-known deep learning models: long short-term memory (LSTM), Transformer, and denoising autoencoder (DAE). In particular, we conduct empirical study with various combinations of the three deep learning models. The experiment results first show that DAE is useful to remove noise from the raw input data. The experiment results also show that the combination of DAE and Transformer leads to the best performance.","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate remaining useful life (RUL) prediction is critical for successful operation of a target system. In pursuing a better method for RUL prediction, in this paper, we consider three well-known deep learning models: long short-term memory (LSTM), Transformer, and denoising autoencoder (DAE). In particular, we conduct empirical study with various combinations of the three deep learning models. The experiment results first show that DAE is useful to remove noise from the raw input data. The experiment results also show that the combination of DAE and Transformer leads to the best performance.
基于深度学习模型的剩余使用寿命预测实证研究
准确的剩余使用寿命(RUL)预测对于目标系统的成功运行至关重要。为了寻求一种更好的RUL预测方法,本文考虑了三种著名的深度学习模型:长短期记忆(LSTM)、Transformer和去噪自动编码器(DAE)。特别是,我们对三种深度学习模型的不同组合进行了实证研究。实验结果首先表明,DAE可以有效地去除原始输入数据中的噪声。实验结果还表明,DAE和Transformer相结合可以获得最佳的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信