Scaling down: applying large vocabulary hybrid HMM-MLP methods to telephone recognition of digits and natural numbers

K. Ma, Nelson Morgan
{"title":"Scaling down: applying large vocabulary hybrid HMM-MLP methods to telephone recognition of digits and natural numbers","authors":"K. Ma, Nelson Morgan","doi":"10.1109/NNSP.1995.514896","DOIUrl":null,"url":null,"abstract":"The hybrid hidden Markov model (HMM)/neural network (NN) speech recognition system at the International Computer Science Institute (ICSI) uses a single hidden layer multilayer perceptron (MLP) to compute emission probabilities of HMM states. This phoneme-based recognition approach was developed for large vocabulary size continuous speech recognition. In this paper, however, such a recognition scheme is applied directly to much smaller vocabulary size corpora, such as the Spoken Language Understanding Numbers'93 database and the TI connected digits. The authors report on the development of small baseline systems to facilitate all future research experiments, and also on the use of these systems for experiments in context-dependent hybrid HMM-MLP systems.","PeriodicalId":403144,"journal":{"name":"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1995.514896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The hybrid hidden Markov model (HMM)/neural network (NN) speech recognition system at the International Computer Science Institute (ICSI) uses a single hidden layer multilayer perceptron (MLP) to compute emission probabilities of HMM states. This phoneme-based recognition approach was developed for large vocabulary size continuous speech recognition. In this paper, however, such a recognition scheme is applied directly to much smaller vocabulary size corpora, such as the Spoken Language Understanding Numbers'93 database and the TI connected digits. The authors report on the development of small baseline systems to facilitate all future research experiments, and also on the use of these systems for experiments in context-dependent hybrid HMM-MLP systems.
缩小:将大词汇量混合HMM-MLP方法应用于数字和自然数的电话识别
国际计算机科学研究所(ICSI)的混合隐马尔可夫模型(HMM)/神经网络(NN)语音识别系统使用单个隐层多层感知器(MLP)来计算隐马尔可夫状态的发射概率。这种基于音素的识别方法是针对大词汇量连续语音识别而开发的。然而,在本文中,这种识别方案直接应用于词汇量小得多的语料库,如口语理解数字93数据库和TI连接数字。作者报告了小型基线系统的发展,以促进所有未来的研究实验,以及在上下文相关的混合HMM-MLP系统中使用这些系统进行实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信