Data-Mining-Based Link Failure Detection for Wireless Mesh Networks

Timo Lindhorst, G. Lukas, E. Nett, M. Mock
{"title":"Data-Mining-Based Link Failure Detection for Wireless Mesh Networks","authors":"Timo Lindhorst, G. Lukas, E. Nett, M. Mock","doi":"10.1109/SRDS.2010.51","DOIUrl":null,"url":null,"abstract":"Mobile robot applications operating in wireless environments require fast detection of link failures in order to enable fast repair. In previous work, we have shown that cross-layer failure detection can reduce failure detection latency significantly. In particular, we monitor the behavior of the WLAN MAC layer to predict failures on the link layer. In this paper, we investigate data mining techniques to determine which parameters, i.e., the events, or combination and timing of events, occurring on the MAC layer most probably lead to link failures. Our results show, that the parameters revealed with the data mining approach produce similar or even more accurate failure predictions than achieved so far.","PeriodicalId":219204,"journal":{"name":"2010 29th IEEE Symposium on Reliable Distributed Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 29th IEEE Symposium on Reliable Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2010.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Mobile robot applications operating in wireless environments require fast detection of link failures in order to enable fast repair. In previous work, we have shown that cross-layer failure detection can reduce failure detection latency significantly. In particular, we monitor the behavior of the WLAN MAC layer to predict failures on the link layer. In this paper, we investigate data mining techniques to determine which parameters, i.e., the events, or combination and timing of events, occurring on the MAC layer most probably lead to link failures. Our results show, that the parameters revealed with the data mining approach produce similar or even more accurate failure predictions than achieved so far.
基于数据挖掘的无线网状网络链路故障检测
在无线环境中运行的移动机器人应用需要快速检测链路故障,以便快速修复。在之前的工作中,我们已经证明了跨层故障检测可以显着降低故障检测延迟。特别是,我们监视WLAN MAC层的行为以预测链路层上的故障。在本文中,我们研究数据挖掘技术,以确定哪些参数,即事件,或事件的组合和时间,发生在MAC层上最有可能导致链路故障。我们的结果表明,数据挖掘方法所揭示的参数产生的故障预测与目前所实现的相似甚至更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信