{"title":"Online Decision-Making with High-Dimensional Covariates","authors":"Hamsa Bastani, M. Bayati","doi":"10.2139/ssrn.2661896","DOIUrl":null,"url":null,"abstract":"Big data has enabled decision-makers to tailor decisions at the individual-level in a variety of domains such as personalized medicine and online advertising. This involves learning a model of decision rewards conditional on individual-specific covariates. In many practical settings, these covariates are high-dimensional; however, typically only a small subset of the observed features are predictive of a decision's success. We formulate this problem as a multi-armed bandit with high-dimensional covariates, and present a new efficient bandit algorithm based on the LASSO estimator. Our regret analysis establishes that our algorithm achieves near-optimal performance in comparison to an oracle that knows all the problem parameters. The key step in our analysis is proving a new oracle inequality that guarantees the convergence of the LASSO estimator despite the non-i.i.d. data induced by the bandit policy. Furthermore, we illustrate the practical relevance of our algorithm by evaluating it on a real-world clinical problem of warfarin dosing. A patient's optimal warfarin dosage depends on the patient's genetic profile and medical records; incorrect initial dosage may result in adverse consequences such as stroke or bleeding. We show that our algorithm outperforms existing bandit methods as well as physicians to correctly dose a majority of patients.","PeriodicalId":275253,"journal":{"name":"Operations Research eJournal","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"245","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2661896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 245
Abstract
Big data has enabled decision-makers to tailor decisions at the individual-level in a variety of domains such as personalized medicine and online advertising. This involves learning a model of decision rewards conditional on individual-specific covariates. In many practical settings, these covariates are high-dimensional; however, typically only a small subset of the observed features are predictive of a decision's success. We formulate this problem as a multi-armed bandit with high-dimensional covariates, and present a new efficient bandit algorithm based on the LASSO estimator. Our regret analysis establishes that our algorithm achieves near-optimal performance in comparison to an oracle that knows all the problem parameters. The key step in our analysis is proving a new oracle inequality that guarantees the convergence of the LASSO estimator despite the non-i.i.d. data induced by the bandit policy. Furthermore, we illustrate the practical relevance of our algorithm by evaluating it on a real-world clinical problem of warfarin dosing. A patient's optimal warfarin dosage depends on the patient's genetic profile and medical records; incorrect initial dosage may result in adverse consequences such as stroke or bleeding. We show that our algorithm outperforms existing bandit methods as well as physicians to correctly dose a majority of patients.