Predicting Personality Using Facebook Status Based on Semi-supervised Learning

Heci Zheng, Chunhua Wu
{"title":"Predicting Personality Using Facebook Status Based on Semi-supervised Learning","authors":"Heci Zheng, Chunhua Wu","doi":"10.1145/3318299.3318363","DOIUrl":null,"url":null,"abstract":"Personality analysis on social media is a research hotspot due to the importance of personality research in psychology as well as the rapid development of social media. Many studies have used social media status to analyze user's personality, but most of them are conducted on inadequate label data and linguistic features. In this paper, to explore the usage of unlabeled data on personality analysis, a personality analysis framework based on semi-supervised learning is introduced. Besides, for making full use of the language information in social media status, the well-known n-gram model is adopted to extract linguistic features. The experimental results demonstrate the semi-supervised learning can take advantage of unlabeled data and improve the accuracy of prediction model.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Personality analysis on social media is a research hotspot due to the importance of personality research in psychology as well as the rapid development of social media. Many studies have used social media status to analyze user's personality, but most of them are conducted on inadequate label data and linguistic features. In this paper, to explore the usage of unlabeled data on personality analysis, a personality analysis framework based on semi-supervised learning is introduced. Besides, for making full use of the language information in social media status, the well-known n-gram model is adopted to extract linguistic features. The experimental results demonstrate the semi-supervised learning can take advantage of unlabeled data and improve the accuracy of prediction model.
基于半监督学习的Facebook状态预测人格
由于人格研究在心理学中的重要性以及社交媒体的快速发展,社交媒体上的人格分析成为一个研究热点。许多研究使用社交媒体状态来分析用户的个性,但大多是在标签数据和语言特征不足的情况下进行的。为了探索未标记数据在人格分析中的应用,本文提出了一种基于半监督学习的人格分析框架。此外,为了充分利用社交媒体状态中的语言信息,我们采用了众所周知的n-gram模型来提取语言特征。实验结果表明,半监督学习可以充分利用未标记数据,提高预测模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信