Ling@CASS Solution to the NLP-TEA CGED Shared Task 2018

NLP-TEA@ACL Pub Date : 2018-07-01 DOI:10.18653/v1/W18-3709
Q. Hu, Yongwei Zhang, Fang Liu, Yueguo Gu
{"title":"Ling@CASS Solution to the NLP-TEA CGED Shared Task 2018","authors":"Q. Hu, Yongwei Zhang, Fang Liu, Yueguo Gu","doi":"10.18653/v1/W18-3709","DOIUrl":null,"url":null,"abstract":"In this study, we employ the sequence to sequence learning to model the task of grammar error correction. The system takes potentially erroneous sentences as inputs, and outputs correct sentences. To breakthrough the bottlenecks of very limited size of manually labeled data, we adopt a semi-supervised approach. Specifically, we adapt correct sentences written by native Chinese speakers to generate pseudo grammatical errors made by learners of Chinese as a second language. We use the pseudo data to pre-train the model, and the CGED data to fine-tune it. Being aware of the significance of precision in a grammar error correction system in real scenarios, we use ensembles to boost precision. When using inputs as simple as Chinese characters, the ensembled system achieves a precision at 86.56% in the detection of erroneous sentences, and a precision at 51.53% in the correction of errors of Selection and Missing types.","PeriodicalId":321264,"journal":{"name":"NLP-TEA@ACL","volume":"514 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-3709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, we employ the sequence to sequence learning to model the task of grammar error correction. The system takes potentially erroneous sentences as inputs, and outputs correct sentences. To breakthrough the bottlenecks of very limited size of manually labeled data, we adopt a semi-supervised approach. Specifically, we adapt correct sentences written by native Chinese speakers to generate pseudo grammatical errors made by learners of Chinese as a second language. We use the pseudo data to pre-train the model, and the CGED data to fine-tune it. Being aware of the significance of precision in a grammar error correction system in real scenarios, we use ensembles to boost precision. When using inputs as simple as Chinese characters, the ensembled system achieves a precision at 86.56% in the detection of erroneous sentences, and a precision at 51.53% in the correction of errors of Selection and Missing types.
Ling@CASS NLP-TEA CGED共享任务2018解决方案
在本研究中,我们采用序列到序列学习来模拟语法纠错任务。该系统将潜在错误的句子作为输入,并输出正确的句子。为了突破人工标记数据非常有限的瓶颈,我们采用了半监督方法。具体来说,我们采用母语为汉语的人写的正确句子来产生汉语作为第二语言的学习者所犯的伪语法错误。我们使用伪数据对模型进行预训练,使用CGED数据对模型进行微调。考虑到在实际场景中准确性在语法纠错系统中的重要性,我们使用集成来提高准确性。在使用汉字等简单输入时,集成系统对错误句子的检测精度达到86.56%,对选择和缺失类型错误的纠正精度达到51.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信