Performance Analysis of the Gradient Feature and the Modified Direction Feature for Off-line Signature Verification

Vu Nguyen, Yumiko Kawazoe, T. Wakabayashi, U. Pal, M. Blumenstein
{"title":"Performance Analysis of the Gradient Feature and the Modified Direction Feature for Off-line Signature Verification","authors":"Vu Nguyen, Yumiko Kawazoe, T. Wakabayashi, U. Pal, M. Blumenstein","doi":"10.1109/ICFHR.2010.53","DOIUrl":null,"url":null,"abstract":"Feature extraction is an important process in off-line signature verification. In this work, the performance of two feature extraction techniques, the Modified Direction Feature (MDF) and the gradient feature are compared on the basis of similar experimental settings. In addition, the performance of Support Vector Machines (SVMs) and the squared Mahalanobis distance classifier employing the Gradient Feature are also compared and reported. Without using forgeries for training, experimental results indicated that an average error rate as low as 15.03% could be obtained using the gradient feature and SVMs.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Feature extraction is an important process in off-line signature verification. In this work, the performance of two feature extraction techniques, the Modified Direction Feature (MDF) and the gradient feature are compared on the basis of similar experimental settings. In addition, the performance of Support Vector Machines (SVMs) and the squared Mahalanobis distance classifier employing the Gradient Feature are also compared and reported. Without using forgeries for training, experimental results indicated that an average error rate as low as 15.03% could be obtained using the gradient feature and SVMs.
梯度特征和改进方向特征用于离线签名验证的性能分析
特征提取是离线签名验证的重要环节。本文在相似实验设置的基础上,比较了两种特征提取技术——修正方向特征(MDF)和梯度特征的性能。此外,还比较了支持向量机(svm)和采用梯度特征的平方马氏距离分类器的性能。实验结果表明,在不使用伪造物进行训练的情况下,使用梯度特征和支持向量机可以获得低至15.03%的平均错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信