Classification of ground moving radar targets using convolutional neural network

Esra Al Hadhrami, Maha Al Mufti, Bilal Taha, N. Werghi
{"title":"Classification of ground moving radar targets using convolutional neural network","authors":"Esra Al Hadhrami, Maha Al Mufti, Bilal Taha, N. Werghi","doi":"10.23919/MIKON.2018.8405154","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new approach for Pulsed Doppler Radar Automatic Target Recognition (ATR). Target classification depends highly on the quality of the training database, the extracted features and the classification algorithm. Radar echo signals captured by the Radar show the Doppler effect produced by moving targets. Those echo signals can be processed in different domains to attain distinctive characteristics of targets that can be used for target classification. The proposed approach is based on utilizing a pre-trained Convolutional Neural Network (CNN) as a feature extractor whereas the output features are used to train a multiclass Support Vector Machine (SVM) classifier. Our approach was tested on RadEch database of 8 ground moving targets classes. Our approach outperformed the state-of-the-art methods, using the same database, and reached an accuracy of 99%.","PeriodicalId":143491,"journal":{"name":"2018 22nd International Microwave and Radar Conference (MIKON)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 22nd International Microwave and Radar Conference (MIKON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIKON.2018.8405154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we propose a new approach for Pulsed Doppler Radar Automatic Target Recognition (ATR). Target classification depends highly on the quality of the training database, the extracted features and the classification algorithm. Radar echo signals captured by the Radar show the Doppler effect produced by moving targets. Those echo signals can be processed in different domains to attain distinctive characteristics of targets that can be used for target classification. The proposed approach is based on utilizing a pre-trained Convolutional Neural Network (CNN) as a feature extractor whereas the output features are used to train a multiclass Support Vector Machine (SVM) classifier. Our approach was tested on RadEch database of 8 ground moving targets classes. Our approach outperformed the state-of-the-art methods, using the same database, and reached an accuracy of 99%.
基于卷积神经网络的地面运动雷达目标分类
本文提出了一种新的脉冲多普勒雷达自动目标识别方法。目标分类在很大程度上取决于训练库的质量、提取的特征和分类算法。雷达捕捉到的雷达回波信号显示了运动目标产生的多普勒效应。这些回波信号可以在不同的域进行处理,以获得目标的不同特征,从而用于目标分类。该方法基于使用预训练的卷积神经网络(CNN)作为特征提取器,而输出特征用于训练多类支持向量机(SVM)分类器。我们的方法在RadEch的8类地面移动目标数据库上进行了测试。我们的方法优于最先进的方法,使用相同的数据库,达到99%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信