Selecting an Iconic Pose From an Action Video

Geethu Miriam Jacob, B. Stenger
{"title":"Selecting an Iconic Pose From an Action Video","authors":"Geethu Miriam Jacob, B. Stenger","doi":"10.23919/MVA51890.2021.9511347","DOIUrl":null,"url":null,"abstract":"This paper presents a method for selecting an iconic pose frame from an action video. An iconic pose frame is a frame showing a representative pose, distinct from other actions. We first extract a diverse set of keyframes from the video using unsupervised video summarization. A classification loss ensures that the selected frames retain high action classification accuracy. To find iconic poses, we introduce two loss terms, an Extreme Pose Loss, encouraging selecting poses far from the mean pose, and a Frame Contrastive Loss, which encourages poses from the same action to be similar. In a user preference study on UCF-101 videos we show that the automatically selected iconic pose keyframes are preferred to manually selected ones in 48% of cases.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a method for selecting an iconic pose frame from an action video. An iconic pose frame is a frame showing a representative pose, distinct from other actions. We first extract a diverse set of keyframes from the video using unsupervised video summarization. A classification loss ensures that the selected frames retain high action classification accuracy. To find iconic poses, we introduce two loss terms, an Extreme Pose Loss, encouraging selecting poses far from the mean pose, and a Frame Contrastive Loss, which encourages poses from the same action to be similar. In a user preference study on UCF-101 videos we show that the automatically selected iconic pose keyframes are preferred to manually selected ones in 48% of cases.
从动作视频中选择一个标志性的姿势
本文提出了一种从动作视频中选取标志性姿态帧的方法。一个标志性的姿势框架是一个框架,显示一个代表性的姿势,与其他动作不同。我们首先使用无监督视频摘要从视频中提取不同的关键帧集。分类损失确保所选帧保持较高的动作分类精度。为了找到标志性的姿势,我们引入了两个损失项,一个是极端姿势损失,鼓励选择远离平均姿势的姿势,一个是帧对比损失,鼓励来自相同动作的姿势相似。在对UCF-101视频的用户偏好研究中,我们表明,在48%的情况下,自动选择的标志性姿势关键帧比手动选择的关键帧更受欢迎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信