A novel method to detect android malware using Locality Sensitive Hashing algorithms

Ebrahim Sayahi, A. Hamzeh
{"title":"A novel method to detect android malware using Locality Sensitive Hashing algorithms","authors":"Ebrahim Sayahi, A. Hamzeh","doi":"10.1109/AISP.2017.8324089","DOIUrl":null,"url":null,"abstract":"Malware are programs which created to sabotage a system or do some other malicious tasks. In this article, a new method for classifying malware using a Locality Sensitive Hashing algorithm called Simhash will be proposed. In this article, a hash will be generated from specific parts of a file with the use of Simhash algorithm and the bits of this hashes will be considered as the features of the file. Finally, with the use of some of machine learning algorithms, a model will be created from these features and classifying is done using the model.","PeriodicalId":386952,"journal":{"name":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","volume":"425 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2017.8324089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Malware are programs which created to sabotage a system or do some other malicious tasks. In this article, a new method for classifying malware using a Locality Sensitive Hashing algorithm called Simhash will be proposed. In this article, a hash will be generated from specific parts of a file with the use of Simhash algorithm and the bits of this hashes will be considered as the features of the file. Finally, with the use of some of machine learning algorithms, a model will be created from these features and classifying is done using the model.
一种利用位置敏感哈希算法检测android恶意软件的新方法
恶意软件是用来破坏系统或执行其他恶意任务的程序。本文提出了一种基于局部敏感散列算法的恶意软件分类新方法Simhash。在本文中,将使用Simhash算法从文件的特定部分生成散列,该散列的位将被视为文件的特征。最后,通过使用一些机器学习算法,将从这些特征创建一个模型,并使用该模型进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信