Multispace, Dynamic, Fixed-Radius, All Nearest Neighbours Problem

B. Papis, A. Pacut
{"title":"Multispace, Dynamic, Fixed-Radius, All Nearest Neighbours Problem","authors":"B. Papis, A. Pacut","doi":"10.1109/SYNASC.2014.40","DOIUrl":null,"url":null,"abstract":"We present a solution to a specific version of one of the most fundamental computer science problem - the nearest neighbour problem (NN). The new, proposed variant of the NN problem is the multispace, dynamic, fixed-radius, all nearest neighbours problem, where the NN data structure handles queries that concern different subsets of input dimensions. In other words, solutions to this problem allow searching for closest points in terms of different features. This is an important issue in the context of practical applications of incremental state abstraction techniques for high dimensional Markov Decision Processes (MDP). The proposed solution is a set of simple, one-dimensional structures, that can handle range queries for arbitrary subset of input dimensions for the Chebyshev distance. We also provide version for other metrics, and a simplified version of the algorithm that yields approximate results but runs faster. The proposed approximation is deterministic in a way that ensures that the most important (in the context of the considered state abstraction task) parts of the result are returned with no accuracy loss. The presented experimental study demonstrates improvement in comparison to some state-of-the-art algorithms on uniformly random and MDP-generated data.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a solution to a specific version of one of the most fundamental computer science problem - the nearest neighbour problem (NN). The new, proposed variant of the NN problem is the multispace, dynamic, fixed-radius, all nearest neighbours problem, where the NN data structure handles queries that concern different subsets of input dimensions. In other words, solutions to this problem allow searching for closest points in terms of different features. This is an important issue in the context of practical applications of incremental state abstraction techniques for high dimensional Markov Decision Processes (MDP). The proposed solution is a set of simple, one-dimensional structures, that can handle range queries for arbitrary subset of input dimensions for the Chebyshev distance. We also provide version for other metrics, and a simplified version of the algorithm that yields approximate results but runs faster. The proposed approximation is deterministic in a way that ensures that the most important (in the context of the considered state abstraction task) parts of the result are returned with no accuracy loss. The presented experimental study demonstrates improvement in comparison to some state-of-the-art algorithms on uniformly random and MDP-generated data.
多空间、动态、固定半径、全近邻问题
我们提出了一个解决最基本的计算机科学问题之一的特定版本-最近邻问题(NN)。新提出的神经网络问题的变体是多空间、动态、固定半径、全近邻问题,其中神经网络数据结构处理涉及输入维度的不同子集的查询。换句话说,这个问题的解决方案允许根据不同的特征搜索最近的点。在高维马尔可夫决策过程(MDP)的增量状态抽象技术的实际应用中,这是一个重要的问题。提出的解决方案是一组简单的一维结构,可以处理切比雪夫距离输入维度的任意子集的范围查询。我们还提供了其他指标的版本,以及生成近似结果但运行速度更快的算法的简化版本。所建议的近似在某种程度上是确定的,它确保返回结果中最重要的部分(在所考虑的状态抽象任务的上下文中)而不损失准确性。所提出的实验研究表明,与一些最先进的算法相比,在均匀随机和mdp生成的数据上有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信