WaP: Indoor localization and tracking using WiFi-Assisted Particle filter

Feng Hong, Yongtuo Zhang, Zhao Zhang, Meiyu Wei, Yuan Feng, Zhongwen Guo
{"title":"WaP: Indoor localization and tracking using WiFi-Assisted Particle filter","authors":"Feng Hong, Yongtuo Zhang, Zhao Zhang, Meiyu Wei, Yuan Feng, Zhongwen Guo","doi":"10.1109/LCN.2014.6925774","DOIUrl":null,"url":null,"abstract":"High accurate indoor localization and tracking of smart phones is critical to pervasive applications. Most radio-based solutions either exploit some error prone power-distance models or require some labor-intensive process of site survey to construct RSS fingerprint database. This study offers a new perspective to exploit RSS readings by their contrast relationship rather than absolute values, leading to three observations and functions called turn verifying, room distinguishing and entrance discovering. On this basis, we design WaP (WiFi-Assisted Particle filter), an indoor localization and tracking system exploiting particle filters to combine dead reckoning, RSS-based analyzing and knowledge of floor plan together. All the prerequisites of WaP are the floor plan and the coarse locations on which room the APs reside. WaP prototype is realized on off-the-shelf smartphones with limited particle number typically 400, and validated in a college building covering 1362m2. Experiment results show that WaP can achieve average localization error of 0.71m for 100 trajectories by 8 pedestrians.","PeriodicalId":143262,"journal":{"name":"39th Annual IEEE Conference on Local Computer Networks","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"39th Annual IEEE Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2014.6925774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

High accurate indoor localization and tracking of smart phones is critical to pervasive applications. Most radio-based solutions either exploit some error prone power-distance models or require some labor-intensive process of site survey to construct RSS fingerprint database. This study offers a new perspective to exploit RSS readings by their contrast relationship rather than absolute values, leading to three observations and functions called turn verifying, room distinguishing and entrance discovering. On this basis, we design WaP (WiFi-Assisted Particle filter), an indoor localization and tracking system exploiting particle filters to combine dead reckoning, RSS-based analyzing and knowledge of floor plan together. All the prerequisites of WaP are the floor plan and the coarse locations on which room the APs reside. WaP prototype is realized on off-the-shelf smartphones with limited particle number typically 400, and validated in a college building covering 1362m2. Experiment results show that WaP can achieve average localization error of 0.71m for 100 trajectories by 8 pedestrians.
WaP:室内定位和跟踪使用wifi辅助粒子滤波
智能手机的高精度室内定位和跟踪是普及应用的关键。大多数基于无线电的解决方案要么利用一些容易出错的功率距离模型,要么需要一些劳动密集型的现场调查过程来构建RSS指纹数据库。本研究为利用RSS读数的对比关系而不是绝对值提供了新的视角,从而产生了三种观察和功能,即转弯验证、房间区分和入口发现。在此基础上,我们设计了WaP (WiFi-Assisted Particle filter)室内定位跟踪系统。WaP是一种利用粒子滤波将航位推算、基于rss的分析和平面图知识相结合的室内定位跟踪系统。WaP的所有先决条件是平面图和ap所在房间的大致位置。WaP原型在有限粒子数(通常为400)的现成智能手机上实现,并在占地1362平方米的大学建筑中进行了验证。实验结果表明,WaP对8个行人的100条轨迹的平均定位误差为0.71m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信